• 1.

    Castillo CM, Osorio LE, Palma GI, 2002. Assessment of therapeutic response of Plasmodium vivax and Plasmodium falciparum to chloroquine in a malaria transmission free area in Colombia. Mem Inst Oswaldo Cruz 97: 559562.

    • Search Google Scholar
    • Export Citation
  • 2.

    Osorio L, Pérez Ldel P, González IJ, 2007. Assessment of the efficacy of antimalarial drugs in Tarapacá, in the Colombian Amazon basin [article in Spanish]. Biomedica 27: 133140.

    • Search Google Scholar
    • Export Citation
  • 3.

    Corredor V, Murillo C, Echeverry DF, Benavides J, Pearce RJ, Roper C, Guerra AP, Osorio L, 2010. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob Agents Chemother 54: 31213125.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gonçalves LA, Cravo P, Ferreira MU, 2014. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 109: 534539.

    • Search Google Scholar
    • Export Citation
  • 5.

    Soto J, Toledo J, Gutierrez P, Luzz M, Llinas N, Cedeño N, Dunne M, Berman J, 2001. Plasmodium vivax clinically resistant to chloroquine in Colombia. Am J Trop Med Hyg 65: 9093.

    • Search Google Scholar
    • Export Citation
  • 6.

    Arias AE, Corredor A, 1989. Low response of Colombian strains of Plasmodium vivax to classical antimalarial therapy. Trop Med Parasitol 40: 2123.

    • Search Google Scholar
    • Export Citation
  • 7.

    White NJ, 2004. Antimalarial drug resistance. J Clin Invest 113: 10841092.

  • 8.

    Forero DA, Chaparro PE, Vallejo AF, Benavides Y, Gutiérrez JB, Arévalo-Herrera M, Herrera S, 2014. Knowledge, attitudes and practices of malaria in Colombia. Malar J 13: 165.

    • Search Google Scholar
    • Export Citation
  • 9.

    Mawili-Mboumba DP, Ndong Ngomo JM, Maboko F, Guiyedi V, Mourou Mbina JR, Kombila M, Bouyou Akotet MK, 2014. Pfcrt 76T and pfmdr1 86Y allele frequency in Plasmodium falciparum isolates and use of self-medication in a rural area of Gabon. Trans R Soc Trop Med Hyg 108: 729734.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bojang KA, Schneider G, Forck S, Obaro SK, Jaffar S, Pinder M, Rowley J, Greenwood BM, 1998. A trial of Fansidar plus chloroquine or Fansidar alone for the treatment of uncomplicated malaria in Gambian children. Trans R Soc Trop Med Hyg 92: 7376.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ocan M, Obuku EA, Bwanga F, Akena D, Richard S, Ogwal-Okeng J, Obua C, 2015. Household antimicrobial self-medication: a systematic review and meta-analysis of the burden, risk factors and outcomes in developing countries. BMC Public Health 15: 742.

    • Search Google Scholar
    • Export Citation
  • 12.

    Douine M et al. 2018. Predictors of antimalarial self-medication in illegal gold miners in French Guiana: a pathway towards artemisinin resistance. J Antimicrob Chemother 73: 231239.

    • Search Google Scholar
    • Export Citation
  • 13.

    Leyva-F R, Erviti-E J, Ramsey JM, Gasman N, 1997. Medical drug utilization patterns for febrile patients in rural areas of Mexico. J Clin Epidemiol 50: 329335.

    • Search Google Scholar
    • Export Citation
  • 14.

    Nsimba SE, Rimoy GH, 2005. Self-medication with chloroquine in a rural district of Tanzania: a therapeutic challenge for any future malaria treatment policy change in the country. J Clin Pharm Ther 30: 515519.

    • Search Google Scholar
    • Export Citation
  • 15.

    Blenkinsopp A, Bradley C, 1996. Patients, society, and the increase in self medication. BMJ 312: 629632.

  • 16.

    Rodríguez AD, Penilla RP, Henry-Rodríguez M, Hemingway J, Francisco Betanzos A, Hernández-Avila JE, 2003. Knowledge and beliefs about malaria transmission and practices for vector control in southern Mexico. Salud Publica Mex 45: 110116.

    • Search Google Scholar
    • Export Citation
  • 17.

    Management Sciences for Health/Strengthening Pharmaceutical Systems, 2010. Technical Report: Assessment of the Availability of Antimalarial Medicines in the Public and Private Markets in Countries of the Amazon Basin. Presented to the U.S. Agency for International Development by the Strengthening Pharmaceutical Systems (SPS) Program. Arlington, VA: Management Sciences for Health.

    • Search Google Scholar
    • Export Citation
  • 18.

    Departamento Administrativo Nacional de Estadística (DANE), 2012. Indicador de Necesidades Básicas Insatisfechas (NBI) por Municipios. Colombia. Available at: www.dane.gov.co. Accessed September 27, 2018.

  • 19.

    Valero-Bernal MV, Tanner M, Muñoz-Navarro S, Valero-Bernal JF, 2017. Proportion of fever attributable to malaria in Colombia: potential indicators for monitoring progress towards malaria elimination. Rev Salud Publica 19: 4551.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mount DL, Nahlen BL, Patchen LC, Churchill FC, 1989. Adaptations of the Saker-Solomons test: simple, reliable colorimetric field assays for chloroquine and its metabolites in urine. Bull World Health Organ 67: 295300.

    • Search Google Scholar
    • Export Citation
  • 21.

    Veiga MI, Ferreira PE, Björkman A, Gil JP, 2006. Multiplex PCR-RFLP methods for pfcrt, pfmdr1 and pfdhfr mutations in Plasmodium falciparum. Mol Cel Probes 20: 100104.

    • Search Google Scholar
    • Export Citation
  • 22.

    Tobón CA, Giraldo SC, Pineros JJG, Arboleda NM, Blair TS, Carmona-Fonseca J, 2006. Epidemiologia de la malaria falciparum complicada: estudio de casos y controles en Tumaco y Turbo, Colombia, 2003. Revista Brasileira de Epidemiologia 9: 283296.

    • Search Google Scholar
    • Export Citation
  • 23.

    Asare KK, Boampong JN, Afoakwah R, Ameyaw EO, Sehgal R, Quashie NB, 2014. Use of proscribed chloroquine is associated with an increased risk of pfcrt T76 mutation in some parts of Ghana. Malar J 13: 246.

    • Search Google Scholar
    • Export Citation
  • 24.

    Frosch AE, Venkatesan M, Laufer MK, 2011. Patterns of chloroquine use and resistance in sub-Saharan Africa: a systematic review of household survey and molecular data. Malar J 10: 116.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lu F et al. 2017. Return of chloroquine sensitivity to Africa? Surveillance of African Plasmodium falciparum chloroquine resistance through malaria imported to China. Parasit Vectors 10: 355.

    • Search Google Scholar
    • Export Citation
  • 26.

    Restrepo E, Carmona-Fonseca J, Maestre A, 2008. Plasmodium falciparum: high frequency of pfcrt point mutations and emergence of new mutant haplotypes in Colombia. Biomedica 28: 523530.

    • Search Google Scholar
    • Export Citation
  • 27.

    Echeverry DF, Holmgren G, Murillo C, Higuita JC, Björkman A, Gil JP, Osorio L, 2007. Short report: polymorphisms in the pfcrt and pfmdr1 genes of Plasmodium falciparum and in vitro susceptibility to amodiaquine and desethylamodiaquine. Am J Trop Med Hyg 77: 10341038.

    • Search Google Scholar
    • Export Citation
  • 28.

    Aponte S, Guerra Á, Álvarez-Larrotta C, Bernal SD, Restrepo C, González C, Yasnot MF, Knudson-Ospina A, 2017. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg 111: 7180.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bonilla E, Rodriguez A, 1993. Determining malaria effects in rural Colombia. Soc Sci Med 37: 11091114.

  • 30.

    Instituto Nacional de Salud de Colombia. Sistema de Vigilancia en Salud Publica (SIVIGILA), 2017. Boletines Epidemiologicos de Malaria de 2011 a 2017. Available at: https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx. Accessed August 30, 2018.

  • 31.

    Sáenz FE et al. 2017. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections. Malar J 16: 300.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Evidence of Self-Medication with Chloroquine before Consultation for Malaria in the Southern Pacific Coast Region of Colombia

View More View Less
  • 1 Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia;
  • | 2 Universidad Icesi, Cali, Colombia
Restricted access

Self-medication with antimalarial drugs is a major factor in the development of drug resistance, exerting subtherapeutic drug pressure on circulating parasite populations. Data on self-medication with antimalarials from the Southern Pacific coast region of Colombia, where 4-aminoquinolines resistance and political instability prevail, are vital to elimination strategies. We present results of an exploratory study of 254 individuals having malaria symptoms who sought malaria diagnosis in two hospitals in Tumaco, Department of Nariño, Colombia. Thirty-two percent (82/254) of participants had positive Saker–Solomons urine tests, indicating self-medication with chloroquine (CQ) before consultation for diagnosis. Notably, among 30 pregnant women participating in the study, 43% were Saker-–Solomons positive. Molecular analysis of the K76T position encoded by the pfcrt gene revealed the mutant allele in all four samples that were both positive for Plasmodium falciparum and positive for the Saker–Solomons test, suggesting persistent CQ pressure. The high frequency of self-medication, particularly among pregnant women merits attention by public health authorities and comprehensive investigation.

Author Notes

Address correspondence to Diego F. Echeverry, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Calle 125 # 19-225, Cali 760031, Colombia. E-mail: difereg77@gmail.com

Financial support: This study received financial support from Colciencias, call 656-2014 “Es Tiempo de Volver” award FP44842-503-2014 and call 251-2010 award 222951928929. This research and its publication were also supported by the Fogarty International Center of the National Institutes of Health under Award Number D43TW006589. The content is solely the responsibility of the authors and does not necessarily represent the official views of the U.S. National Institutes of Health.

Authors’ addresses: Gustavo Diaz and Diego F. Echeverry, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia, and Universidad Icesi, Cali, Colombia, E-mails: diaz.gustavo2011@gmail.com and difereg77@gmail.com. Alvaro Mauricio Lasso, Claribel Murillo, and Lidia M. Montenegro, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia, E-mails: amlasso@cideim.org.co, clarms76@gmail.com, and made8610@gmail.com.

Save