Prevalence of Asymptomatic Parasitemia and Gametocytemia in HIV-Infected Children on Differing Antiretroviral Therapy

Charlotte V. Hobbs,1,2,3† Erin E. Gabriel,4 Portia Kanthunzi,5 Gerald Tegha,6 Jean Tazie,5 Yonghua Li,3 Tiina Ilmet,3,6 Elena Artimovich,7 Jillian Neal,2 Ted Hall,5 Sunil Parikh,7 Brian Kirmse,10 Patrick Jean-Philippe,11 Jingyang Chen,1,12 William R. Prescott,8 Paul Palumbo,13 Patrick E. Duffy,4 and William Borkowsky3 for the P1068s Study Team

1Batson Children’s Hospital, Department of Pediatrics (Division of Infectious Diseases) and Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi; 2Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; 3Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, New York, New York; 4Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; 5Kamuzu Central Hospital, University of North Carolina at Chapel Hill Lillongwe Project, Lilongwe, Malawi; 6Cornell Clinical Trials Unit, Weill Cornell Medicine, New York, New York; 7University of Maryland, Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland; 8HYDAS World Health, Inc., Hummelstown, Pennsylvania; 9Yale Schools of Public Health and Medicine, New Haven, Connecticut; 10Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Batson Children’s Hospital, Jackson, Mississippi; 11HIV-DAIDS, Division of the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland; 12Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, Washington; 13Division of Infectious Diseases and International Health, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire

Abstract. Laboratory data and prior pediatric reports indicate that HIV protease inhibitor (PI)-based antiretroviral therapy (ART) kills gametocytes and reduces rates of gametocytemia, but not asymptomatic parasitemia, in a high-malaria-transmission area. To determine whether ARV regimen impacts these rates in areas with less-intense malaria transmission, we compared asymptomatic parasitemia and gametocytemia rates in HIV-infected children by ARV regimen in Lillongwe, Malawi, an area of low-to-moderate transmission intensity. HIV PI lopinavir–ritonavir (LPV–rtv) ART– or non-nucleoside reverse transcriptase inhibitor nevirapine (NVP) ARV–treated children did not differ in the rates of polymerase chain reaction-detected asymptomatic parasitemia (relative risk [RR] 0.43 95% confidence interval [CI] [0.16, 1.18], P value 0.10) or microscopically detected gametocytemia with LPV–rtv ARV during symptomatic malaria (RR 0.48 95% CI [0.22, 1.04], P value 0.06). LPV–rtv ARV was not associated with reduced rates of asymptomatic parasitemia, or gametocytemia on days of symptomatic malaria episodes, in HIV-infected children. Larger studies should evaluate whether ARV impacts transmission.

INTRODUCTION

HIV and malaria occur co-endemically in sub-Saharan Africa.1 Laboratory data show that HIV protease inhibitors (PIs) kill various life cycle stages of malaria parasites.2–4 PIs are second-line World Health Organization (WHO)-recommended antiretroviral therapy (ART) for children above 3 years old and first-line ARV for those below 3 years.5 Clinical studies have shown that HIV-infected children on PI ART may have a modest reduction in clinical malaria episodes, and the effect may be partially attributed to pharmacokinetic interactions resulting in an increase in antimalarial drug levels.8–12 In addition, laboratory data1,5 and recent pediatric clinical studies indicate that HIV PI lopinavir–ritonavir (LPV–rtv) ARV, when compared with non-nucleoside reverse transcriptase inhibitor (NNRTI) ARV, is associated with reduced gametocytemia,11,13 but not asymptomatic parasitemia,13 rates in high malaria-transmission areas.

Because malaria transmission intensity influences malaria infection and intervention efficacy, we evaluated the malaria impact of different ARV regimens in HIV-infected children by measuring asymptomatic parasitemia and gametocytemia in an area of low-to-moderate transmission. We recently reported an association between increased time to recurrent positive malaria blood smears in LPV–rtv ARV–treated subjects compared with nevirapine (NVP) ARV–treated subjects, when accounting for an LPV–rtv and antimalarial treatment interaction, in an observational pediatric study.10 Herein, we measure and compare rates of asymptomatic parasitemia and gametocytemia in children receiving differing ARV regimens.

METHODS

Study design. The study was approved by site-specific institutional review boards; each child’s parent or legal guardian provided written informed consent.10 The study design was as previously described.10,14 The study was conducted at three sites with endemic-malaria transmission according to published data at the time, which included Kampala, Uganda; Lusaka, Zambia; and Lilongwe, Malawi; analysis was performed only on data from the Malawi site, however, because of low blood smear positivity rates at the other sites, as previously described.14 Briefly, subjects who enrolled in our study, P1068s, were HIV-infected children of age 2–36 months who qualified for treatment according to WHO criteria and were randomized to initiate PI- or NNRTI ARV in the larger HIV treatment study (P1060).10,14 Subjects received trimethoprim–sulfamethoxazole prophylaxis were given insecticide-treated bed nets, were breastfed, and lived within 30 km of the study site.10 Clinical illness (including malaria) was managed according to standard guidelines.10,16 Study visits occurred every 12 weeks and during intercurrent illness.10 Giemsa-stained thick smear and dried blood spots
Gametocytemia (during CCM visits) 0.48 (0.22, 1.04) 0.06
Gametocytemia (overall, or CCM + non-CCM visits) 0.67 (0.39, 1.17) 0.16

DISCUSSION

In an area of low-to-moderate transmission, LPV–rtv ARV was not associated with reduced rates of asymptomatic parasitemia, or gametocytemia with or without concurrent symptomatic malaria episodes, in HIV-infected children.

Our previous study indicated that the reduced frequency of recurrent positive blood smears was only observed when accounting for a drug interaction between LPV–rtv ARV and the antimalarial (artemether–lumefantrine). In this report, however, we did not detect differences in asymptomatic parasitemia. Direct PI ARV killing of malaria parasites may not be significant, or our study may be underpowered, both because of the small size of the study and decreased likelihood of finding younger children with asymptomatic parasitemia in an area of low-to-moderate transmission. Indeed, the majority of infections being new rather than recrudescent may also reflect sampling which was performed mostly every 3 months, with the exception of intermittent illness visits.

As expected, gametocytemia during CCM was more commonly detected when compared with non-CCM episodes. We compared the gametocyte prevalence overall between children on LPV–rtv ARV or NVP ARV but did not detect any significant difference between the groups when comparing overall (CCM and non-CCM) episodes. However, when

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of rates of asymptomatic parasitemia and gametocytemia for children on lopinavir–ritonavir antiretroviral therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>Asymptomatic parasitemia</td>
<td>0.43 (0.16, 1.18)</td>
</tr>
<tr>
<td>Gametocytemia (overall, or CCM + non-CCM visits)</td>
<td>0.67 (0.39, 1.17)</td>
</tr>
<tr>
<td>Gametocytemia (non-CCM visits)</td>
<td>1.01 (0.33, 3.07)</td>
</tr>
<tr>
<td>Gametocytemia (during CCM visits)</td>
<td>0.48 (0.22, 1.04)</td>
</tr>
</tbody>
</table>

*Adjusted for gender, age at enrollment, baseline CD4, and time from enrollment in the parent study to the time of enrollment in the P1068s. The indicator of PI-based ARV was based on having enrolled on the substudy while receiving PI-based ARV; two subjects had switched to PI-based ARV from their randomized treatment before entry into the substudy. ARV = antiretroviral therapy; CCM = confirmed clinical malaria; PI = protease inhibitor.
limiting gametocytemia analysis to CCM visits, a significant difference was not appreciated.

A larger, randomized previous pediatric study that was conducted in an area of high-intensity malaria transmission also found that PIs were also not associated with reduced asymptomatic parasitemia in HIV-infected children, despite the study reporting fewer cases of recurrent clinical malaria with LPV–rtv ARV when compared with NNRTI ARV in an area of high malaria transmission intensity. This finding was partially attributed to a pharmacokinetic interaction between the ritonavir component of LPV–rtv and the antimalarial drugs, resulting in a prolonged period of lumefantrine detection, which is consistent with our prior publication. Moreover, analysis revealed no difference in gametocyte prevalence for children receiving LPV–rtv ARV compared with NNRTI ARV. However, when evaluating gametocytemia difference on the day of malaria diagnosis, they also found that it was much more likely that a child was gametocytemic on the day of malaria diagnosis, and within this analysis, LPV–rtv ARV was associated with significantly lower risk of gametocytemia. The data we report herein parallel some of these findings, except that gametocytemia on the day of CCM in LPV–rtv ARV compared with NVP ARV–treated children was not significantly different (P = 0.06). Part of this difference may be due to our study comparing children on LPV–rtv ARV with those on NVP ARV, whereas the prior study compared children on NNRTI ARV (either NVP or efavirenz, EFV) to those on LPV–rtv. This is of note as EFV has been shown to reduce antimalarial exposure much more significantly than NVP. PI kills malaria gametocyte and transmission forms at clinically relevant levels through an unclear mechanism. Clinical trials from adult and pregnant women have shown little or no PI effect on clinical malaria, but pediatric data suggest that reduction of clinical malaria occurs with PI ARV, possibly because of direct parasite killing or pharmacokinetic effects. Our data suggest that HIV PI–based ARV did not reduce the asexual parasite pool because we found no difference in asymptomatic parasitemia rates. Lack of significant difference in gametocytemia rates between ARV groups similarly suggests a lack of PI-gametocytocidal effect.

A limitation of our study is our small sample size. Moreover, we were not able to assess gametocytemia differences at time points post treatment to account for residual drug interaction effects, although similar previous assessments resulted in no significant differences.

A combination of interventions will likely eradicate malaria. Further studies are needed to evaluate whether PI ARV reduces gametocytemia and impacts transmission.

Received June 13, 2017. Accepted for publication September 13, 2017.

Acknowledgments: We thank the children, their families, and the care providers who agreed to participate in the P1068s trial and place their trust in the site study teams. We thank the P1068s study team members at the clinical sites for their contributions to the study, including Severian Phakati (Malawi). We also thank the U.S.-based members of P1068s for lab processing and data management assistance. We also thank Gyan Joshi and Jing Wang (Clinical Research Directorate/CMRP, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland) for their programmatic support in statistical analysis. Lastly, we also thank Lynne Mofenson, MD for critical review and suggestions of this manuscript. The authors confirm that all ongoing and related trials for this drug/intervention are registered (#NCT00719602). This trial is registered at ClinicalTrials.gov (#NCT00719602, https://clinicaltrials.gov/ct2/show/NCT00719602).

Financial support: Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) [Award Numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC), and UM1AI06716 (IMPAACT LC)], with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH). Funding for this study was provided in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Authors’ addresses: Charlotte V. Hobbs, Batson Children’s Hospital, Department of Pediatrics (Division of Infectious Diseases) and Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, and Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, New York, NY. E-mail:chobbs@umc.edu. Erin E. Gabriel, Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, E-mail: erin.gabriel@nih.gov. Portia Kamthunzi, Gerald Tegha, and Jean Tazie, Kamuzu Central Hospital, University of North Carolina at Chapel Hill Lilongwe Project, Lilongwe, Malawi, E-mails: pkamthunzi@uncilongwe.org, gtegha@uncilongwe.org, and jtauzie@yahoo.com. Yonghua Li and William Borkowsky, Division of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, New York, NY. E-mails: Yonghua.Li@nyumc.org and william.borkowsky@nyumc.org. Tiina Ilmet, Division of Infectious Disease and Immunology, New York University School of Medicine, New York, NY, E-mail: tiil2001@med.cornell.edu. Elena Artimovich, University of Maryland, Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, E-mail: eartimovich@wustl.edu. Jillian Neal and Patrick E. Duffy, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, E-mails: jillian.vanvliet@nih.gov and patrick.duffy@nih.gov. Ted Hall and William R. Prescott, HYDAS World Health, Inc., Hummelstown, PA, E-mails: tedhall@aol.com and Roy@hydas.com. Sunil Parikh, Yale Schools of Public Health and Medicine, New Haven, CT, E-mail: sunil.parikh@yale.edu. Brian Kirmse, Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Batson Children’s Hospital, Jackson, MS, E-mail: bkirmsse@umc.edu. Patrick Jean-Philippe, HUFDJAIDS, Division of the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, MD, E-mail: jeanphilippe@niaid.nih.gov. Jingyang Chen, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, and Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, WA, E-mail: jingyang.chen@seattlechildrens.org. Paul Palumbo, Division of Infectious Diseases and International Health, Geisel School of Medicine at Dartmouth, Lebanon, NH, E-mail: paul.e.palumbo@dartmouth.edu.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

