Case Report: Arthrocladium fulminans Arthritis and Osteomyelitis

Abdoulay Diallo,1 Céline Michaud,1 Souandou Tabibou,1 Maxime Raz,2 Carla Fernandez,3 Hubert Lepidi,4 Pierre-Edouard Fournier,4 Andreas Stein,4,5,6 Stéphane Ranque,7,8 and Piseth Seng4,5,6*

1Service de Médecine Polyvalente, Centre Hospitalier de Mayotte, Mamoudzou, Mayotte; 2Laboratoire de Biologie Médicale, Centre Hospitalier de Mayotte, Mamoudzou, Mayotte; 3Service d’Anatomie Pathologique, CHU Félix-Guyon, Saint-Denis, Réunion; 4Aix Marseille Université, INSERM 1095, CNRS 7278, IRD 198, URMIITE, Marseille, France; 5Assistance Publique–Hôpitaux de Marseille (APHM), Service de Maladies Infectieuses, Centre Hospitalier Universitaire de la Conception, Marseille, France; 6Centre de Référence des Infections Ostéo-Articulaires (CRIOA) Interrégional Sud-Méditerranée, Hôpital de la Conception, Marseille, France; 7IP-TPT UMR MD3, Aix Marseille Université, Marseille, France; 8Parasitologie et Mycologie, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, Marseille, France

Abstract. Arthrocladium fulminans is the only species in the Arthrocladium genus that has been involved in a previous human infection. To date, only one case of A. fulminans infection in a patient with GATA-2 immunodeficiency has been reported. We here report the second human case and the first case of septic arthritis and osteomyelitis due to A. fulminans in an immunocompetent patient, living in Mayotte, a French island in western Indian Ocean. He was successfully treated with surgical debridement and 6 months of antifungal treatment. This second observation of human invasive disease caused by A. fulminans is an additional argument for the pathogenicity of this rare species.

INTRODUCTION

We report the first case of septic arthritis and osteomyelitis due to Arthrocladium fulminans in a previously healthy man. Arthrocladium fulminans is the only species in the Arthrocladium genus that has been involved in a previous human infection. One case of A. fulminans infection in a patient with GATA-2 immunodeficiency has been reported.1 The isolate shown by the E-test assay for this A. fulminans isolate showed low minimum inhibitory concentrations (MICs) for itraconazole (0.19 mg/L), voriconazole (0.094 mg/L), and posaconazole (0.032 mg/L), and a relatively higher MIC for amphotericin B (6 mg/L). The patient was treated with oral terbinafine (500 mg/day) combined with itraconazole (200 mg/day) for 6 months. He recovered, the purulent drainage stopped at 7 days, and the skin fistula healed at 4 weeks from the beginning of antifungal treatment. The patient was treated for 6 months and he recovered fully, with normal mobility of the right shoulder without sequelae at the 6-month follow-up.

DISCUSSION AND CONCLUSION

This article presents the first case of osteoarticular chromoblastomycosis caused by A. fulminans in a man living in the French overseas region and department of Mayotte, located in the Comoros Islands and situated in the Indian Ocean off the coast of southeast Africa, between southwestern Madagascar and northeastern Mozambique. Chromoblastomycosis is a subcutaneous mycosis due to pigmented (black) fungi in the dematiaceous group, which is common in tropical climates in different regions of Africa and in the western tropical Indian Ocean. These fungi are natural saprophytes and are filamentous, and they can be isolated from dead wood, thorns, and soil. Transmission is direct, usually after trauma from wood debris or plants. It is a disease of adult humans, often arising in farmers or loggers who walk barefoot, and three-quarters of cases occur in the feet and legs. The route of transmission of osteoarticular chromoblastomycosis in our case may be direct inoculation, because the patient often carries fair-sized...
strips of wood on his shoulder. No bacteremia, no secondary or concomitant infected site was found in our case.

The diagnosis of chromoblastomycosis is based on direct examination, culture, and histopathology. Three infectious agents that are often involved in chromoblastomycosis are *Fonsecaea pedrosoi*, *Phialophora verrucosa*, and *Cladophialophora carrionii*.4 Identification of etiological agents of chromoblastomycosis from culture of surgical bone biopsies with antifungal susceptibility testing is crucial.
to cure these infections, which are difficult to cure and have a high relapse rate. We believe that precise identification of fungal species using molecular identification such as the ITS regions in fungal DNA analysis is necessary for epidemiological purposes and to identify strains with significant virulence to humans.

To our knowledge, few cases of osteoarticular chromoblastomycosis have been reported in the literature, including two cases of arthritis and osteomyelitis caused by *F. pedrosoi*, two cases of foot osteomyelitis caused by *P. verrucosa*, and one case of nasal osteomyelitis. The combination of surgical debridement and itraconazole therapy has been used to treat cases of *F. pedrosoi* osteomyelitis.

In a few reported cases, terbinafine was used at high dosage or combined with itraconazole to treat cases of chromoblastomycosis refractory to antifungal treatment. The combination of terbinafine and voriconazole was synergistic in vitro on the *F. pedrosoi* strain of refractory chromoblastomycosis.

The genus *Arthrocladium* refers to nonsporulating dematiaceous (black) fungi of the Trichomieriaceae (Chaetothyriales) family. It includes four species: *Arthrocladium caudatum*, *Arthrocladium tropicale*, and *Arthrocladium tardum*, which are rotten wood saprophytes, and the single known strain of the *A. fulminans* species, which was involved in a fatal infection in an immunocompromised patient. We here report the second human case and the first case of septic arthritis and osteomyelitis due to *A. fulminans* in an immunocompetent patient, successfully treated with surgical debridement and 6 months of antifungal treatment. This second observation of human invasive disease caused by *A. fulminans* is an additional argument in favor of the particular pathogenicity of this relatively rare species.

CONSENT

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the editor-in-chief of this journal.

Received March 8, 2016. Accepted for publication October 18, 2016.

Published online January 9, 2017.

Acknowledgment: We thank Livia Klembarova for his assistance with patient management.

Authors’ addresses: Abdoulayah Diallo, Céline Michaud, and Souandou Tabibou, Service de Médecine Polyvalente, Centre Hospitalier de Mayotte, Mamoudzou, Mayotte. E-mails: am.diallo@chmayotte.fr, celine.michaud@chmayotte.fr, and souandou.tabibou@chmayotte.fr. Maxime Raz, Laboratoire de Biologie Médicale, Centre Hospitalier de Mayotte, Mamoudzou, Mayotte. E-mail: maxime.raz@chmayotte.fr. Carla Fernandez, Service d’Anatomie Pathologique, Centre Hospitalier Universitaire de la Réunion, Saint-Denis, Réunion, E-mail: carla.fernandez@chu-reunion.fr. Hubert Lepidi and Pierre-Edouard Fournier, Aix Marseille Université, INSERM 1095, CNRS 7278, IRD 198, URMITE, Marseille, France. E-mails: hubert.lepidi@ap-hm.fr and pierre-edouard.fournier@univ-amu.fr. Andreas Stein and Piseth Seng, Aix Marseille Université, INSERM 1095, CNRS 7278, IRD 198, URMITE, Marseille, France. Assistance Publique–Hôpitaux de Marseille, Service de Maladies Infectieuses, Centre Hospitalier Universitaire de la Conception, Marseille, France, and Centre de Référence des Infections Ostéo-Articulaires (CRIOA) Inter-régional Sud-Méditerranée, Hôpital de la Conception, Marseille, France. E-mails: andreas.stein@ap-hm.fr and sengpiseth@yahoo.fr. Stéphane Ranque, IP-TPT UMR M35, Aix Marseille Université, Marseille, France. E-mail: stephane.ranque@ap-hm.fr.

REFERENCES

