Rift Valley Fever virus (RVFV) is emerging member of the family *Bunyaviridae* and genus *Phlebovirus* that is transmitted in sub-Saharan Africa, Egypt and the Arabian Peninsula. Transmission is most frequently detected when large epizootic/epidemic outbreaks occur after periods of unusually heavy rainfall. As such, the virus poses a threat to economic stability as well as to human health. Recent outbreaks have been documented in Saudi Arabia (2000) and the Horn of Africa (2006–2007).

Rift Valley Fever virus (RVFV) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication.
averaged scores \(\geq 2 \) (2.00, 2.00, 2.16 and 2.33), and the remaining four had negative scores. Of the five persons with antibodies against retinal tissue who were not diagnosed with RVFV retinitis, one had serologic evidence of RVFV exposure but no retinitis, one had no RVFV exposure but had retinitis (presumably caused by another etiology), and three did not have RVFV exposure or retinitis. There was a trend toward differences in the prevalence of antibodies against retinal tissue for the RVFV-exposed retinitis groups compared with each of the other three groups, but these differences did not reach statistical significance, defined as \(P < 0.05 \) (Table 1).

Our small study examined levels of antibodies against retinal tissue in RVFV-seropositive humans. When the groups were compared individually to cases of retinitis with RVFV exposure, we had insufficient power to detect significant differences. Four of eight of the RVFV-exposed retinitis-positive serum samples had increased levels of antibodies against retinal tissue compared with 1 of 9 in the RVFV-exposed retinitis negative group and RVFV-unexposed retinitis-positive group and 3 of 16 of the RVFV-unexposed, retinitis negative control group. It is clear that larger numbers of persons in each of the groups are needed to assess the implications of our findings. Our attempts to address this were limited by the logistical impediments to performing eye examinations in this and other remote areas of sub-Saharan Africa where RVFV epidemics occur.

The ocular examinations showed a variety of pathologies. Persons who were RVFV-exposed and had retinitis had the following findings: retinal hemorrhage, maculopathy, peripapillitis, and retinitis (positive IHC results) and ischemia, maculopathy, retinitis, and retinopathy (negative IHC results). Those who were RVFV-unexposed with retinitis showed optic atrophy (positive IHC results), retinitis, maculopathies, retinal exudation, ischemic hemorrhage and vasculitis (negative IHC results).

Animal studies suggest that direct viral effect and autoimmune mechanisms play a role in the pathogenesis of RVFV retinitis.15 Ruminants tend to become more severely ill than humans after RVFV infection, but can provide valuable information on severe features of human RVF. The study of Galindo-Cardiel and others of RVFV infection in sheep found ocular complications in 4 of 16 experimentally infected lambs, and viral RNA was detected by reverse transcription–polymerase chain reaction in 2 of 4 of the lambs with ocular involvement.15 Kinetics of human and ovine infections are similar, and ocular complications occur 5–14 days after infection.15,16

However, the lack of any histologic descriptions from human cases in the published literature makes direct comparisons to ovine models problematic.15 If a true association exists between RVFV retinitis and antibodies against retinal tissue, it may have been obscured in the present study by several factors. These factors include misclassification of participants resulting in the inclusion of RVFV seropositive persons with non–RVFV-related retinitis in the RVFV-exposed retinitis positive group, and persons in the RVFV–non-exposed groups who may have also been exposed to RVFV but had since lost their levels of antibodies against RVFV (i.e., seroreversion to negative). Furthermore, the serum from Sangailu was frozen at \(-80^\circ\text{C}\) for one year and the serum from Masalani5 was frozen for four years,6 which may have affected the antibody content. Differences between the black African population studied and the Caucasian donor of the ocular tissue could also affect the validity of our study.

Alternatively, the association we observed could be caused by chance, with levels of antibody against retinal tissue randomly associated with retinitis in the RVFV-positive patients in our study. We observed that healthy persons have low levels of antibodies against retinal tissue, and this finding has been reported elsewhere among healthy persons.17 Rift Valley Fever virus could also directly infect ocular tissues, as it does in calves,18 causing greater permeability of the circulation in the eye with exposure of normally-hidden ocular epitopes to pre-formed antibodies against retinal tissue.

Further studies are needed to determine the pathogenesis of this common complication of RVFV infection and provide possibilities for therapeutic interventions. Postmortem examination of eye tissue from persons who die of RVFV infection during outbreaks could provide important data on pathogenesis. More affected persons need to be studied, and the change in profiles of antibodies against retinal tissue before, during and after the onset of retinitis should be delineated.

Table 1

<table>
<thead>
<tr>
<th>Study group</th>
<th>Village</th>
<th>No. tested</th>
<th>No. positive</th>
<th>Immunohistochemical scores</th>
<th>Group average</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVFV retinitis</td>
<td>Masalani</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>0.6, 0.7, 2, 2.16, 2.33</td>
</tr>
<tr>
<td></td>
<td>Sangailu</td>
<td>3</td>
<td></td>
<td>1</td>
<td>0.83, 1.2</td>
</tr>
<tr>
<td>RVFV unexposed with retinitis</td>
<td>Masalani</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>0, 0.5, 1.25, 1.33, 1.75, 1.75</td>
</tr>
<tr>
<td></td>
<td>Sangailu</td>
<td>3</td>
<td></td>
<td>1</td>
<td>0.14, 1.6, 3</td>
</tr>
<tr>
<td>RVFV exposed without retinitis</td>
<td>Masalani</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>0, 0.17, 0.5, 1, 1.25</td>
</tr>
<tr>
<td></td>
<td>Sangailu</td>
<td>3</td>
<td></td>
<td>1</td>
<td>0, 0.75, 2.33</td>
</tr>
<tr>
<td>RVFV unexposed without retinitis</td>
<td>Masalani</td>
<td>9</td>
<td>17</td>
<td>3</td>
<td>0, 0.25, 0.25, 0.75, 0.75, 1, 1.5, 2.33</td>
</tr>
<tr>
<td></td>
<td>Sangailu</td>
<td>8</td>
<td></td>
<td>3</td>
<td>0, 1.2, 1.25, 1.25, 1.33, 1.5, 2.33, 3</td>
</tr>
</tbody>
</table>

*RVFV = Rift Valley Fever virus. The nine positive scores (2 and 2) are indicated in boldface.

15NEWMAN-GERHARDT AND OTHERS

Acknowledgments: We thank the families in Kenya for their participation in the surveys and Lindsay Steiner-Taylor for designing and optimizing the assay.

Financial support: This study was supported by the National Institutes of Health grant U54AI057160; the Midwest Regional Center of Excellence Program Project Award, International Collaborations in Infectious Disease Research ICIDR Biodefense Supplement grant U01AI45473; the Robert E. Shope International Fellowship in Infectious Diseases, and the Center for Immunobiology and Vaccine Development at Children’s Hospital Oakland Research Institute.

Authors’ addresses: Shoshana Newman-Gerhardt, National Institutes of Health, Bethesda, MD, E-mail: snhyphen@gmail.com. Samuel Muiruri, Division of Vector-Borne and Neglected Tropical Diseases, Ministry of Health, Nairobi, Kenya, E-mail: muiruri1001@yahoo.com. Eric Muchiri, Division of Vector Borne and Neglected Diseases,
Ministry of Public Health and Sanitation, Nairobi, Kenya, E-mail: ericmmuchiri@gmail.com. Clarence J. Peters, Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mail: cjpeters@utmb.edu. Alexander H. Lucas and Angelle Desiree LaBeaud, Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, CA, E-mails: alucas@chori.org and alabeaud@chori.org. Charles H. King and James Kazura, Center for Global Health, Case Western Reserve University, Cleveland, OH, E-mails: chk@case.edu and jxk14@po.cwru.edu.

REFERENCES