Genetic Variation of North American Triatomines (Insecta: Hemiptera: Reduviidae):
Initial Divergence between Species and Populations of Chagas Disease Vector

Bertha Espinoza, Jose Alejandro Martínez-Ibarra, Guiehdani Villalobos, Patricia De La Torre, Juan Pedro Laclette, and Fernando Martínez-Hernández

Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México; Área de Entomología Médica, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México; Departamento de Parasitología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Distrito Federal, México; Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Distrito Federal, México

Abstract. The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridization, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes.

INTRODUCTION

The subfamily Triatominae includes species that are important vectors in the transmission of the protozoan parasite Trypanosoma cruzi, the causal agent of Chagas disease. Although more than 33 species of triatomines have been reported in Mexico,1,2 epidemiologic, biologic, and genetic data for these insects in the literature is scarce. These data are crucial for establishing an appropriate strategy of Chagas disease control. Currently, vector control is the only way to control this infection because of limited efficacy of treatment during the chronic infectious phase and the absence of a vaccine.3,4

Phylogenetic and genetic relationships between Triatoma bolivari, T. brailovskyi, T. mexicana, T. gerstaeckeri, T. recurva, and T. protracta have not been documented. Triatoma brailovskyi, T. bolivari, and T. mexicana are species that are endemic to Mexico and considered as part of the Phyllosoma complex species (Meccus basalsae, M. longipennis, M. mazzottii, M. pallidipennis, M. picturatus, and M. phyllosomus).

Triatoma brailovskyi and T. bolivari have been found in the states of Colima, Nayarit, Oaxaca, and Jalisco,25–8 Their epidemiologic importance as potential vectors of T. cruzi is unknown. Triatoma mexicana has been found in the states of Guanajuato, Hidalgo, Queretaro, and San Luis Potosí, where the rate of T. cruzi infections is less than 4%.1,9,10 Triatoma gerstaeckeri has been found in the states of Chihuahua, Coahuila, Nuevo Leon, San Luis Potosí, Sonora, Hidalgo, Tamaulipas, and Veracruz2–10,13 and in the United States in Texas.14 In some of these states, this species was associated with human houses and T. cruzi infections rates of 0% to 63%.10,15–18 Triatoma recurva has been reported in the states of Baja California, Baja California Sur, Chihuahua, Guerrero, Nayarit, Sinaloa and Sonora, and a high level of T. cruzi infection greater than 90%1,19 and has been reported in the United States in Arizona. Triatoma protracta has been reported in the states of Baja California Norte, Chihuahua, Coahuila, Durango, Nuevo Leon, Tamaulipas, Sinaloa, Sonora, San Luis Potosí, and Zacatecas and in several states in the southwestern United States (Arizona, California, Nevada, Texas, New Mexico, and Utah), with T. cruzi infections less than 19%.1,9,10,20,21

Triatoma brailovskyi has been proposed to be a member of a specific complex Dimidiata by using morphologic marker analysis; this complex includes T. dimidiata, T. hegneri, T. ryckmani, and T. gomeznezuii.22 On the basis of internal transcribed spacer 2 (ITS-2) sequences, the species T. gerstaeckeri and T. mexicana have been included in the Phyllosoma complex, and T. bolivari has been included in the Rubrofasciata complex.23 Triatoma protracta is included in the Protracta complex, and T. recurva was proposed to be included in the Phyllosoma complex by using cytochrome B (cytB) sequences, although this last species reportedly shares intermediate characteristics with the genus Dipetalogaster.22,24

In North America, genetic population studies of triatomines by using nucleotide sequences are scarce. Most of this research focuses on T. dimidiata25–7 In some cases, large hybrid zones exist between sympatric sibling species.28 Triatoma recurva and T. rubida showed significant genetic differences when cytB and cytochrome oxidase I sequences were compared in populations from widely separated geographic localities.24 With respect to the Phyllosoma complex species, the principal studies have focused on taxonomic relationships. However, genetic population analyses are scarce. These types of studies are important because taxonomic status of these species would provide useful information.

The present study used cytB and ITS-2 sequences and taxonomic analysis to examine genetic variation between the T. brailovskyi, T. bolivari, T. gerstaeckeri, T. mexicana, T. protracta, and T. recurva, and with species of their respective complexes (Phyllosoma and Protracta) and other sequences of triatomines of epidemiologic importance in North America.

* Address correspondence to Fernando Martínez-Hernández, Departamento de Ecología de Agentes Patógenos, Hospital General Doctor Manuel Gea González, Tlalpan 4800, Col. Secció n XVI, PC 14080, Distrito Federal, México. E-mail: fherxyz@yahoo.com
MATERIALS AND METHODS

Taxon sampling. Adults of the species *T. bolivari*, *T. brainovskyi*, *T. gerstaeckeri*, *T. mexicana*, *T. protracta*, and *T. recurva* were collected in different states in Mexico (Table 1). Specimens were identified morphologically by using keys of Lent and Wygodzinsky, and Carcavallo and others. Similar specimens are deposited in the collections of the Laboratorio de Tripanosomiasis of Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico and Centro Universitario del Sur, Universidad de Guadalajara.

DNA extraction, amplification, cloning, and sequencing. Genomic DNA was extracted from one leg of each insect by using the extraction method of Martínez and others. The oligonucleotides used for the amplification of cytB and ITS-2 sequences have been described. Fragments obtained by amplification were subcloned into the cloning vector pCR2.1 (Invitrogen, Carlsbad, CA) and sequenced by using universal vector primers (T7 promoter and M13 reverse). Sequencing for both chains was performed by using the 310 ABI prism sequencer (Applied Biosystems, Foster City, CA).

Population genetic analysis. The percentage of polymorphic sites, nucleotide diversity (π), and haplotype polymorphism

Table 1

<table>
<thead>
<tr>
<th>Species (Triatoma sp.)</th>
<th>GenBank Accession Numbers</th>
<th>cytB (no.)</th>
<th>ITS-2 (no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meccus bassolsae (Triatoma bassolsae)</td>
<td>Puebla</td>
<td>AY859410<sup>29</sup> (1)</td>
<td>AY860394<sup>29</sup></td>
</tr>
<tr>
<td>T. barbieri</td>
<td>Oaxaca</td>
<td>AY8530137<sup>29</sup> (1)</td>
<td>JQ282701<sup>31</sup> (3)</td>
</tr>
<tr>
<td>T. bolivari</td>
<td>Jalisco</td>
<td>JQ282718<sup>-9</sup>/18 (2)</td>
<td>JQ282704<sup>-6</sup>/18 (3)</td>
</tr>
<tr>
<td>T. brainovskyi</td>
<td>Oaxaca</td>
<td>JQ282702<sup>-2</sup>/18 (3)</td>
<td>JQ282704<sup>-6</sup>/18 (3)</td>
</tr>
<tr>
<td>T. gerstaeckeri</td>
<td>Chihuahua</td>
<td>JQ282723<sup>-5</sup>/18 (3)</td>
<td>JQ282707<sup>-9</sup>/18 (3)</td>
</tr>
<tr>
<td>T. lenticularis</td>
<td>Nuevo Leon</td>
<td>AY859414<sup>29</sup> (1)</td>
<td>AM286734<sup>23</sup> (1)</td>
</tr>
<tr>
<td>Meccus longiperennis (Triatoma longiperennis)</td>
<td>Nayarit</td>
<td>AY859412<sup>29</sup> (1)</td>
<td>AY860397<sup>-8</sup>/18 (2)</td>
</tr>
<tr>
<td>T. mexicana</td>
<td>Guanajuato</td>
<td>JQ282726<sup>-7</sup>/18 (2)</td>
<td>JQ282710<sup>-2</sup>/18 (3)</td>
</tr>
<tr>
<td>T. nitida</td>
<td>Hidalgo</td>
<td>DQ118976<sup>9</sup> (1)</td>
<td>AM286728<sup>23</sup> (1)</td>
</tr>
<tr>
<td>T. protracta</td>
<td>Guatemala</td>
<td>AF045723<sup>21</sup> (1)</td>
<td>AM286733<sup>23</sup> (1)</td>
</tr>
<tr>
<td>T. recurva</td>
<td>Sonora</td>
<td>AF045721<sup>7</sup> (1)</td>
<td>JQ282715<sup>-1</sup> (1)</td>
</tr>
<tr>
<td>T. picturatus (T. picturata)</td>
<td>Nayarit</td>
<td>AY859413<sup>29</sup> (1)</td>
<td>AY860396<sup>-9</sup> (5)</td>
</tr>
<tr>
<td>T. phyllosomus (Triatoma phyllosomus)</td>
<td>Jalisco</td>
<td>DQ199881<sup>24</sup> (1)</td>
<td>AY860398<sup>-23</sup> (3)</td>
</tr>
<tr>
<td>T. mazzottii (Meccus mazzottii)</td>
<td>Guerrero</td>
<td>AY859421<sup>-22</sup>/18 (2)</td>
<td>AY860392<sup>-3</sup>/18 (2)</td>
</tr>
<tr>
<td>T. dimidiata</td>
<td>Oaxaca</td>
<td>DQ199881<sup>24</sup> (1)</td>
<td>AY860395<sup>-23</sup> (3)</td>
</tr>
<tr>
<td>T. phyllosomus</td>
<td>Oaxaca</td>
<td>AY859411<sup>29</sup></td>
<td>AM286693<sup>-7</sup>/18 (3)</td>
</tr>
<tr>
<td>T. mazzottii</td>
<td>Guerrero</td>
<td>AY859421<sup>22</sup>/18 (2)</td>
<td>AY860392<sup>-3</sup> (2)</td>
</tr>
<tr>
<td>T. recurva</td>
<td>Sonora</td>
<td>DQ199881<sup>24</sup></td>
<td>AY860395<sup>-23</sup> (3)</td>
</tr>
<tr>
<td>T. rubida</td>
<td>Arizona, USA</td>
<td>DQ19881<sup>23</sup> (24)</td>
<td>AY859415<sup>-16</sup> (3)</td>
</tr>
</tbody>
</table>

[*] Numbers in superscript indicate article that referred to the GenBank accession no. of the sequence analyzed in this study. cytB = cytochrome B; ITS-2 = internal transcribed spacer 2.

[†] unknown location; π = nucleotide diversity; h = no. haplotypes; 0 = haplotype diversity; S = similarity percentage; T = Tajima’s D test; FST_{1,2} = coancestry coefficient (CC) between group 1 and 2; FST_{A,4} = CC between subgroup A and group 2; FST_{B,4} = CC between subgroup B and group 2; π₁ = nucleotide diversity group 1; π₂ =ND group 2; π₃ = ND subgroup A; π₄ = ND subgroup B.

† Sequences obtained in this study.
Sequence alignment and phylogenetic analysis. Multiple alignments were made by using MEGA version 5 software (www.megasoftware.net/). Modeltest version 3.7 software www.molecularre-evolution.org/software/phylogenetics/modeltest) was used to determine the appropriate model of molecular evolution. For cytB sequences, the best model was the Hasegawa Kishino Yano model with gamma distribution and invariable sites. For ITS-2 sequences and both markers (cytB and ITS-2), the best model was the general time reversible model with gamma distribution. The phylogenetic reconstruction using Bayesian inference was performed with the Mr. Bayes 3.1.2 program (http://mrbayes.sourceforge.net/). The analysis ran for 10 million generations, sampling trees every 100 generations. Trees with scores lower than those at stationery (burn-in) were discarded from the analysis. The sampled trees that reached the stationary phase were collected and used to build majority consensus trees. Other species used in this study were Dipetalogaster maximus AF045728, T. infestans AF045721, DQ118975; T. sanguisuga AF045725; Rhodnius prolixus AF045718, DQ118977 with cytB and D. maximus AJ266887; T. infestans AY860387-8; and R. prolixus DQ118978 with ITS-2 sequences.

Phylogenetic inferences based on RNA secondary structure. RNA secondary structure of ITS-2 sequences from M. mazzottii, T. bolivari, T. brailovskyi, T. dimidiata, T. gerstaeckeri, M. mazzottii, T. mexicana, M. pallidipennis, M. phyllosoma, and T. recurva were predicted by using consensus alignment and single sequences in three different web software: RNAalifold WebServer (http://rna.tbi.univie.ac.at/cgi-bin/alfold.cgi), RNA Folding form (http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form), and RNA secondary structure prediction (www.genebee.msu.su/services/rna2_reduced.html). Structural domains in ITS-2 initially were predicted according to the frequency of bases and mutation information in the multiple alignments and then identified based on the structure logo program RNA Structure Logo (www.cbs.dtu.dk/~gorodkin/appl/slogo.html).

RESULTS

Sequence analysis. Thirty-one sequences with both markers were obtained and deposited in GenBank (Table 1). The size of the amplified cytB gene fragment was 313 basepairs; for ITS-2, it ranged from 454 to 584 basepairs. The cytB sequences showed a larger number of variables (49.8%) and informative sites (43.5%) than ITS-2 (39.9% and 34.8%, respectively). As expected for a cytB protein-coding gene, the third codon positions had the most variation, (75%), followed by the first (19.6%) and second (5.4%) positions.

Intraspecific variation in cytB of the species in the Phyllosoma complex (T. mexicana, M. mazzottii, M. picturatus, M. longipennis, and M. pallidipennis) from different geographic areas was analyzed. Sequences of T. mexicana from Hidalgo and Guanajuato showed 92% similarity and and $\pi = 0.058$ between them; M. mazzottii from Guerrero and Oaxaca showed 87% similarity and $\pi = 0.09$; M. picturatus from Nayarit and Jalisco showed 86% similarity (43 of 313) and $\pi = 0.14$; M. longipennis from Nayarit and Zacatecas showed 91% similarity (29 of 313) and $\pi = 0.093$; and M. pallidipennis from Jalisco and other regions in Morelos showed 97% similarity (9 of 313) and $\pi = 0.015$. Triatoma dimidiata had two groups (groups 1 and 2), and group 1 had two subgroups (subgroups A and B) (Figure 1). The percentage of nucleotides variability between subgroups was 85% (47 of 313) with FSTA = 0.46, and the variation between subgroups A and B compared with group 2 was 79% (67 of 313) and FSTA = 0.89 and 80% (64 of 313) and FSTA = 0.81, respectively. For T. protracta from Chihuahua and unknown regions of Mexico, we observed 94% similarity (18 of 313) and $\pi = 0.038$.

Using the ITS-2 marker, we found that T. bolivari, T. gerstaeckeri, M. pallidipennis, M. picturatus, M. mazzottii, T. recurva, and T. rubiida populations showed high values of similarity (≥99%) and low diversity values ($\pi \leq 0.005, 0 \geq \pi \geq 0.7$), in contrast with populations of T. protracta and T. mexicana, which showed high genetic differentiation (Table 1). As with cytB, T. dimidiata showed a similar grouping. The percentage of variable nucleotides between the subgroups (A and B) was 98.5% (7 of 459) and FSTA = 0.47. In contrast with the second group, which was integrated with 21 sequences, we observed 94% similarity (28 of 459) and FSTA = 0.84 and 97.7% similarity (11 of 459) with FSTA = 0.85 between subgroups A and B, respectively.

Microsatellite sequences. Triatoma brailovskyi showed microsatellites identical to those of some species of the Phyllosoma complex ((AT)4TTT(AT)3). For T. bolivari, their microsatellites ((AT)4TTTTAA(AT)3) were more similar to those of T. rubiida ((AT)4TTTTAT(AT)3), a species that belongs to the Rubrofasciata complex. Triatoma mexicana had three microsatellites, two from the samples collected in Guanajuato ((AT)4TTTTA(AT)3 and (AT)3T(AT)9) and one from Hidalgo ((AT)3TTT(AT)9). Triatoma protracta had two microsatellites sequences, one from Sonora ((AT)4TTTTATAA(AT)4) and one from Chihuahua ((AT)3TTTAA(AT)4). T. recurva microsatellites sequences (AT)4TTTTAT(AT)3 were more similar to T. bolivari microsatellites; only two mutations were observed.

Phylogenetic analysis. Similarity between phylogenetic reconstructions using Bayesian inference with the cytB (Figure 1) and ITS-2 sequences (Figure 2) was observed. Phylogenetic analyses of Phyllosoma and Dimidiata complex species and T. brailovskyi, T. gerstaeckeri, and T. recurva showed a strong clade with 0.99 of posterior probability. In this major clade, there are four subgroups: T. dimidiata group 1 (with two subgroups), T. dimidiata group 2, and Phyllosoma complex groups 1 and 2.

Triatoma bolivari showed a clear relationship with T. rubiida, with posterior probability values of 77% for cytB and 100% for ITS-2. T. protracta and T. barberi showed high similarity with T. bolivari.

To increase support for clades of the separate trees and to obtain a better evolutionary correlation, a third phylogenetic tree was built to align cytB and ITS-2 for each species. Only sequences that had similar numbers of basepairs and geographic origins for both markers were used. A total of 1,053 characteristics were analyzed, with approximately 20% informative sites. Meccus longipennis, T. mexicana, and M. picturatus from different geographic origins were distributed into separate clades. Among the other species,
the genetic relationships were similar to the topology for particulars trees (Figure 3).

RNA secondary structure. The ITS-2 RNA secondary structures obtained showed the lowest free energy structures, with values less than -184 kcal/mol denoting highly stable models. Four preserved domains were identified (I, II, III, and IV) by using consensus alignment and logo structure. All analyzed sequences had four domains and some modifications between hairpins and bulges in each domain. *Meccus bassolsae*, *M. longipennis*, *M. mazzottii*, *M. pallidipennis*, *M. phyllosomus*, *M. picturatus*, *M. phyllosomus* (IQ185114, IQ185140), *M. phyllosomus* (IQ185140, IQ185140).
M. picturatus, and T. gerstaeckeri had similar structures and few modifications in domains I and II. *Triatoma mexicana* showed high similarity between domains I, II and IV and modifications in domain III, and *T. recurva* showed similarity only in domain IV with the above mentioned species.

Triatoma dimidiata RNA secondary structures were constructed according to the sequences that the ITS-2 tree used for each group or subgroup: *T. dimidiata* subgroup A was constructed with 15 sequences, *T. dimidiata* subgroup B with 20 sequences, and *T. dimidiata* group 2 with 16 sequences. These groups showed three structures with modifications in domains I, II, and III and were similar in domain IV. *Triatoma bolivari* and *T. rubida* showed similarity within domains I and IV; *T. barberi* and *T. protracta* shared only

Figure 2. Bayesian phylogenetic trees of triatomine insects with internal transcribed spacer (ITS-2). Majority rule phylogram resulting from Bayesian analysis with the ITS-2 data set under the general time reversible + gamma distribution model of evolution. Values at nodes indicate percentage of the posterior probability. Scale bar indicates nucleotide substitutions per site.
domain I. In general, domains II and IV were the most conserved (Figure 4).

DISCUSSION

This study analyzed five species of *Triatoma* from Mexico and the United States for which little genetic and epidemiologic data are available: *T. brailovskyi*, *T. bolivari*, *T. gerstaeckeri*, *T. recurva*, and *T. prostacta*. *Triatoma gerstaeckeri* and *T. recurva* have been associated with human dwellings and high rates of *T. cruzi* infections (90%). In contrast, *T. bolivari*, *T. brailovskyi*, and *T. protracta* are considered to be sylvatic species.5–7,10,23,34

The aim of this study was to determine genetic variation in populations and perform taxonomic analysis by using ITS-2 and *cytB* sequences of some triatomine species from North America, particularly in *Phyllosoma*, *Dimidiata*, and *Rubrofasciata* complexes. Although several studies have also focused on these aspects, we expanded our analysis to include important phenotypic characteristics such RNA secondary structures, which commonly determine similarity and evolutionary relationships between species. The secondary structures of ITS-1 and ITS-2 regions of RNA reportedly are involved in RNA ribosome maturation processing. Therefore, structures that retain a highly conserved configuration may be useful tools for analyzing this cryptic species.35

Using *cytB* sequences, we detected low values of intraspecific similarity (86–91%) and high values of nucleotide
diversity (0.09–0.14) between the Phyllosoma complex species *M. longipennis*, *M. mazzottii*, *T. mexicana*, and *M. picturatus* from different geographic areas. For example, divergence levels for several *T. infestans* populations in South America did not exceed 2%. Within *T. rubida* populations from Mexico and the United States, the percentage similarity was 87%, and within the *T. recurva* population, the percentage similarity was 92%.

A species complex was proposed for *T. rubida*, *T. recurva*, and *T. brasiliensis*. Analysis of our data from the Phyllosoma complex suggests two hypotheses. The first hypothesis is that geographic fragmentation of these populations generated genetic variants that could indicate either a subspecies or a speciation process. The second hypothesis is that these differences are caused by classification problems related to morphologic plasticity or hybridization of different triatomines species, resulting in genetic introgression. Both hypotheses are feasible. For example, inconsistency in morphologic and genetic characteristics between sympatric species as a result of natural hybridization has been reported, and re-validation of the subspecies in this complex has been proposed.

In areas with sympatric speciation, classification problems could be common, and occasionally morphologic variants are not genetically differentiated.

Unlike previous analyzes of *T. dimidiata* that focused on genetic grouping and correlation with geographic origin or subspecies of *T. dimidiata*, our intraspecific variation analysis formed two groups based on habits: the first group corresponds to insects with domestic and peridomestic habits and the second group corresponds to sylvatic insects. Data for both genetic markers analyzed were similar, and we observed the greatest variation between these two groups. According to the fixation index, the observed null interaction between the two groups and both markers (FST ≥ 0.81) suggests limited migrations. Similar results were reported by Tamay-Segovia and others, who analyzed two groups in a tropical area (sylvatic) and a mainly coastal distribution (peridomestic and domestic).

Triatoma protracta also showed high variation between the two populations. In this regard, Ryckman proposed five subspecies, and Lent and Wygodzinsky proposed synonymy. No previous genetic studies have analyzed these populations. However, these types of studies are important because *T. protracta* populations have high variation, and genetic analyses can verify the taxonomic status of these populations.
We conducted few ITS-2 sequence-structure analyses because no comparative geographic data are available for some species. *Triatoma bolivari*, *T. gerstaeckeri*, and *M. pallidipennis* showed low intraspecific similitude between populations (99.3–99.4%), indicating homogeny that is independent of their geographic distributions. In this instance, data suggested that natural selection pressures are stable and do not favor the new variant generation. However, we suggest that these data should be confirmed by extensive population genetic studies using several markers and other genes.

The *cytB* sequences, RNA secondary structures of ITS-2 (with similarity between domains II, III and domain IV) and microsatellites sequences ((AT)₄TTT(AT)₅) grouped insects in *T. dimidiata* group 2 with species of the *Phyllosoma* complex. *Triatoma dimidiata* group 2 from sylvatic areas could be the origin of the entire *Phyllosoma* complex species and *T. dimidiata* group 1. The domestication process could be an important source of genetic variation between groups. Insects in the *Phyllosoma* complex from sylvatic areas should be analyzed to determine this relationship. An additional important consideration is the taxonomic controversy, particularly in the inclusion or separation of *T. dimidiata* from the *Phyllosoma* complex, which could be complicated by genetic similarity between these groups (*T. dimidiata* group 2 and *Phyllosoma* complex group 2).

Previous taxonomic classification of *T. brailovskyi* morphologically related this species to the *Dimidiata* complex (T. dimidiata, T. hegneri, and T. gomezunaezi). We observed that *T. brailovskyi* was related to the *Phyllosoma* complex on the basis of analogous microsatellites ((AT)₂TTT(AT)₃) and a strong phylogenetic relationship with *M. longipennis* and *T. mexicana* as demonstrated by *cytB* and ITS-2 trees. However, *T. brailovskyi* had a different ITS-2 secondary structure and greater similarities with *T. lecticularia* (Lecticularia complex) in domain I, *T. protracta* (Protracta complex) in domain 2, and the *Phyllosoma* complex in domains III and IV. The phylogenetic tree consensus (*cytB* and ITS-2) and RNA structure suggest that *T. brailovskyi* could be related to *T. recurva* and *M. longipennis* from Zacatecas.

Our study is the first to demonstrate that *Phyllosoma* complex species have genetic differences between *T. mexicana*, *M. longipennis*, and *M. picturatus*; these species have at least two geographically differentiated variants. This finding is important because genetic diversity or phylogenetic relationships with other species or genera could also be different. Therefore, we propose that the *Phyllosoma* complex is divided into two paraphyletic genetic groups: group 1 is composed of *M. bassolsae*, *M. longipennis*, *M. mazzottii*, *M. pallidipennis*, *M. phyllosomus*, and *M. picturatus*, and group 2 is composed of *T. brailovskyi*, *T. mexicana*, *T. gerstaeckeri*, *T. recurva*, and other variants of *M. mazzottii* and *M. picturatus*. Phylogenetic, taxonomic, and paraphyletic characteristics of this complex need to carefully considered because of large genetic variations in some species such as *M. mazzottii*, *M. longipennis*, and *M. picturatus*.

RNA secondary structure analysis in species of the *Phyllosoma* complex (*T. mexicana*, *M. bassolsae*, *T. gerstaeckeri*, *M. longipennis*, *M. pallidipennis*, *M. picturatus*, *M. mazzottii*, *M. phyllosomus*, and *T. recurva*) generally showed four domains with similar morphology and minimal variation in domains I, II, and IV. Domain IV seems to be characteristic of *M. bassolsae*, *M. longipennis*, *M. mazzottii*, *M. pallidipennis*, *M. phyllosomus*, and *M. picturatus*. The ITS-2 secondary structure correlation with minimal changes observed and results of phylogenetic analysis suggested close evolutionary relationships in the *Phyllosoma* complex.

Pfeiler and others used *cytB* and the cytochrome oxidase I gene to include *T. recurva* in the *Phyllosoma* complex. Our data for *cytB* and ITS-2 corroborates this inclusion. Moreover, *T. recurva* showed greater similarity to *M. longipennis* when *cytB* sequences were compared and with *M. mazzottii* when ITS-2 secondary structure was analyzed.

Triatoma species have been related morphologically to the *Rubrofasciata* complex (*T. rubida* and *T. rubrofasciata*) because of similar topology for ITS-2 and *cytB* similarities in secondary structure of domains I and IV of RNA in *T. bolivari* and *T. rubida*. We have confirmed this relationship. Additional morphologic and genetic studies are needed to determine potential relationships between others species.

Finally, there is little data for triatomine groupings. Our analysis reflects the difficulty in separating these insects because of their high genetic variability. The continuous domestication process and fragmentation of habitats could be an important variation source. Therefore, grouping proposals demand careful consideration. These considerations are useful for establishing adequate vector control and for increasing biologic, taxonomic, and phylogenetic information for these important species.

Received February 15, 2012. Accepted for publication September 30, 2012.

Published online December 18, 2012.

Financial support: This study was supported by the Consejo Nacional de Ciencia y Tecnología (grant no. 113985, Dirección General de Asuntos del Personal Académico, and Universidad Nacional Autónoma de México grant no. 229209 to Bertha Espinoza.

Authors’ addresses: Bertha Espinoza, Patricia De La Torre, and Juan Perdo Laclette, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, PC 04510, Distrito Federal, México, E-mails: besgu@biomedicas.unam.mx, dlltore@biomedicas.unam.mx, and lalette@servidor.unam.mx. Jose Alejandro Martinez-Ibarra, A. de Entomología Médica, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, PC 49000, México, E-mail: aibarra@casur.ugd.mx. Guichidani Villalobos, Departamento de Parasitología, Escuela de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Sto. Tomas, PC 11340, DF, México, E-mail: guichidani@yahoo.com.mx, Fernando Martínez-Hernández, Departamento de Ecología de Agentes Patógenos, Hospital General Doctor Manuel Gea González, Tlalpan 4800, Col. Sección XVI, PC 14080, Distrito Federal, México, E-mail: fherryz@yahoo.com.

REFERENCES

