Short Report: Evaluation of a Rapid Point-of-Care Fecal Antigen Detection Test for *Entamoeba histolytica*

Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia; TechLab, Inc., Blacksburg, Virginia; International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh

Abstract. Amebiasis is a major cause of morbidity and mortality in the developing world. A reliable point-of-care test would help to improve diagnosis and early treatment. We evaluated a novel rapid fecal antigen detection test for *E. histolytica* (*E. HISTOLYTICA QUIK CHEK*; TechLab, Inc., Blacksburg, VA), in a cohort of children in Bangladesh where amebiasis is endemic. This point-of-care test had a sensitivity of 100% and a specificity of 100% when compared with enzyme-linked immunosorbent assay antigen detection.

Amebiasis is a major cause of parasitic dysentery in developing countries and is estimated to be second only to malaria as the leading cause of protozoan-related mortality worldwide.1 Infection with *Entamoeba histolytica* can cause a wide range of manifestations ranging from asymptomatic carriage to amebic dysentery and amebic liver abscess.2

Current modes of diagnosis include identification of cysts or trophozoites by microscopy, antigen detection, DNA detection by polymerase chain reaction (PCR), and serologic antibody detection. Stool microscopy has low sensitivity and is unable to differentiate *E. histolytica* from the morphologically similar amoeba *E. dispar*, which is not believed to cause intestinal disease.3 Serologic antibody detection is insensitive early in disease and unable to distinguish active infection from previous exposure.4 Real-time PCR is the most sensitive method, but it is expensive and requires skilled personnel, which limits its use.5 Fecal antigen detection is becoming more widely used, but requires technical expertise.6 Development of a rapid fecal antigen detection test would provide a simple method for diagnosis that may be easily applied in resource-limited settings.

Accurate diagnosis of amebiasis is important for prompt treatment and prevention of progression to invasive disease. We evaluated a point-of-care fecal antigen detection test based on immunochromatographic technology.7

This study was approved by the University of Virginia Institutional Review Board and the Ethical Review Committee at the International Centre for Diarrhoeal Disease Research, Bangladesh. Diarrheal and surveillance fecal samples were obtained from a cohort of children living in an urban slum of Mirpur, Bangladesh. Informed consent was obtained from parents or guardians. Children ranged in age from three months to eleven years.

Fecal specimens were analyzed by using microscopy and then screened by using a multiplex enzyme-linked immunosorbent assay (ELISA) for *E. histolytica*, *Giardia*, and *Cryptosporidium* (*TRI-COMBO PARASITE SCREEN*, TechLab, Inc., Blacksburg, VA). Positive samples were individually tested by using a commercially available ELISA for *E. histolytica* (*E. HISTOLYTICA II*, TechLab). All ELISAs were performed according to their package insert. Fresh and frozen fecal samples were tested.

We tested a third-generation fecal rapid antigen detection test (*E. HISTOLYTICA QUIK CHEK*, TechLab), which is specific for *E. histolytica* adherence lectin.8 The test consists of a membrane device containing two antibody-lined strips. One strip is a control line that binds conjugate, and the other strip contains monoclonal antibody against *E. histolytica* lectin and binds to antigen-conjugate complexes in the fecal sample (Figure 1).

Specimens were prepared by adding 25 μL of feces to 500 μL of diluent in prelabeled test tubes. Tubes were then

*Address correspondence to Poonum S. Korpe, University of Virginia Health System, Carter Harrison Building, Room 1520, 345 Crispell Drive, PO Box 801337, Charlottesville, VA 22908-1337. E-mail: psk9p@virginia.edu

Figure 1. Positive (top) and negative (bottom) results in the *E. HISTOLYTICA QUIK CHEK* test. The line on the left in both tests is an internal control. The line on the right visible in the positive test result indicates presence of *Entamoeba histolytica* antigen in the fecal specimen. The absence of a second line in negative (bottom) test result indicates that the fecal specimen is negative for *E. histolytica* antigen.
inverted and vortexed to ensure adequate suspension. A positive control was prepared by adding 40 μL of positive control solution to 500 μL of diluent. A negative control was prepared by adding 40 μL of diluent (in place of sample) to a tube containing 500 μL of diluent. One drop (40 μL) of conjugate was added to each test tube. Five-hundred microliters of sample-conjugate mixture was transferred into the sample port of the membrane device and the device was incubated for 15 minutes at room temperature. After incubation, 300 μL of wash buffer was added to the reaction window of the membrane device. Subsequently, 60 μL of substrate was added to the reaction window and the device was incubated for 10 minutes at room temperature. Test results were read immediately after the final incubation.

Two-hundred twenty-eight samples were tested with the rapid antigen detection test. Of the 228 stool specimens tested, 56 were positive by ELISA for *E. histolytica*, which was defined as an optical density value > 0.05 after subtraction of a negative control value. Microscopy was 16.1% sensitive and 98.8% specific for detecting *E. histolytica* cysts and trophozoites when compared with the ELISA. The same 56 samples were positive by the *E. HISTOLYTICA QUIK CHEK* as by the ELISA. Also, the same 172 samples were negative by the ELISA and the *E. HISTOLYTICA QUIK CHEK* (Table 1).

Thus, the *E. HISTOLYTICA QUIK CHEK* had a sensitivity of 100% and a specificity of 100% when compared to ELISA. The positive predictive value and negative predictive value of the rapid antigen test were 100%.

Microscopy is often the only means for diagnosis of amebiasis in resource-limited settings and is highly dependent on the skill of the microscopist. Our findings, consistent with those of previous reports, show that microscopy has poor sensitivity for diagnosis of amebiasis. The *E. HISTOLYTICA QUIK CHEK*, a rapid antigen detection test, appears to be just as sensitive and specific as the commercially available *E. HISTOLYTICA II ELISA*. The *E. HISTOLYTICA QUIK CHEK* may be more practical for use in the developing world than the commercially available *E. HISTOLYTICA II ELISA* because the latter requires expensive equipment, skilled personnel, and takes more than two hours to perform. The *E. HISTOLYTICA QUIK CHEK* can be performed and interpreted within 30 minutes, without any additional equipment, and with minimal technical training. Thus, the *E. HISTOLYTICA QUIK CHEK* is an ideal point-of-care test that can be performed at the bedside and in resource-limited settings for rapid and accurate diagnosis of amebiasis.

REFERENCES