Inhibitory Activity of Ferroquine, versus Chloroquine, against western Kenya

Plasmodium falciparum Field Isolates Determined by a SYBR Green I In Vitro Assay

Fredrick L. Eyase, Hoseah M. Akala, Jacob D. Johnson, and Douglas S. Walsh*
Department of Emerging Infectious Diseases Program, U.S. Army Medical Research Unit-Kenya,
Kenya Medical Research Institute-Walter Reed Project, Kisumu and Nairobi, Kenya; Department of Immunology and Medicine,
U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand

Abstract. Ferroquine (FQ), a chloroquine (CQ) analog, is being developed to treat persons with \textit{Plasmodium falciparum} malaria. In 146 \textit{P. falciparum} field isolates from western Kenya, we measured 50\% inhibitory concentrations (IC$_{50}$; nM) of CQ and FQ by a SYBR Green I \textit{in vitro} assay. Reference clones included W2 (CQ resistant) and D6 (CQ sensitive). Mutation analysis was performed for \textit{P. falciparum} CQ-resistance transporter gene (\textit{Pfcrt} K76T). Median IC$_{50}$ values for FQ were lower than CQ for field isolates and the W2 clone (both $P < 0.05$). The \textit{Pfcrt} mutation (76T), which was detected in $> 80\%$ of isolates, conferred higher CQ IC$_{50}$ values ($P < 0.05$) and modestly lower FQ IC$_{50}$ values ($P < 0.05$), versus \textit{Pfcrt} wild type (K76). FQ is more potent than CQ against CQ-resistant \textit{P. falciparum} field isolates and the W2 clone, and is less affected by \textit{Pfcrt} 76T. These findings support the notion that FQ could be useful in treating persons with \textit{P. falciparum} malaria.

INTRODUCTION

Ferroquine (FQ; SSR 97193) is a new 4-aminoquinoline organometallic chloroquine (CQ) analog that is being developed for the curative treatment of adults and children with uncomplicated malaria caused by \textit{Plasmodium falciparum}, likely in multi-drug regimens with an artemisinin. In \textit{in vitro} data indicate that FQ is active against CQ-resistant and CQ-sensitive \textit{P. falciparum} strains and against \textit{P. vivax}.

An increasing number of reports describe \textit{in vitro} growth inhibitory capability of FQ against CQ-resistant and CQ-sensitive \textit{P. falciparum} laboratory strains, often superior to CQ.1–4 As clinical trials of FQ proceed in support of licensure, additional \textit{in vitro} testing of \textit{P. falciparum} field isolates, especially those obtained from sites of FQ efficacy trials with known CQ-resistant \textit{P. falciparum}, may improve understanding of the capabilities of FQ. In Kenya, where drug resistance often emerges in eastern Africa, \textit{P. falciparum} remains largely resistant to CQ, which suggests a useful location to obtain isolates for \textit{in vitro} testing.9–11

The aim of this study was to assess the inhibitory activity of CQ versus FQ against \textit{P. falciparum} field isolates obtained in western Kenya, a region where CQ resistance is well established. To do this assessment, immediate \textit{ex vivo} (IEV) or culture-adapted \textit{P. falciparum} field isolates were examined \textit{in vitro} by using a SYBR Green I 50\% inhibitory concentration (IC$_{50}$) drug sensitivity assay. Additionally, we assessed \textit{P. falciparum} field isolates for drug resistance markers (\textit{P. falciparum} multidrug resistance 1 [\textit{Pfmndr1}] gene and \textit{P. falciparum} chloroquine resistance transporter [\textit{Pfcrt}] gene) to find associations with IC$_{50}$ values.

MATERIALS AND METHODS

\textbf{Protocol and sites.} The study was approved by the Kenya Medical Research Institute and the Walter Reed Army Institute of Research institutional review boards (protocol nos. KEMRI 1330 and WRAIR 1384).

Participating centers, all of which were Kenya Ministry of Health facilities in western Kenya, included Kisumu, Kisii, and Kericho District Hospitals. Kisumu is a lowland, malaria holoendemic area, and Kisii and Kericho are highland, malaria hypoendemic areas.12 Persons attending outpatient clinics in 2009–2010 who were ≥ 6 months of age and had suspected uncomplicated \textit{P. falciparum} malaria were invited to participate in the study. Written informed consent was obtained from all participants or guardians. Anyone treated for malaria within the past one month was ineligible.

\textbf{Sample collection and preparation.} Blood samples (2–3 mL) were obtained from persons who consented and had a positive \textit{P. falciparum} rapid diagnostic test (RDT) (Parascreen; Zephyr Biomedicals, Verna Goa, India) and transported to the laboratory. Three blood spots (each approximately 100 μL) were placed on FTA filter paper (Whatman Inc., Bound Brook, NJ) for parasite DNA extraction and molecular analysis. Malaria blood films on glass slides were made for staining with Giemsa in the laboratory for microscopic examination to confirm RDT results and determine parasitemia. For discrepancies between RDT and microscopy results, microscopic results were used as final results.

\textit{Plasmodium falciparum}–infected blood specimens from Kisumu District Hospital (< a 15 minute drive to the laboratory) were collected in acid citrate dextrose vacutainer tubes (Becton-Dickinson, Franklin Lakes, NJ) and transported within four hours for IEV processing. \textit{Plasmodium falciparum}–infected blood specimens from Kericho and Kisii District Hospitals (2-hour drives to the laboratory) were placed in storage-transport medium and refrigerated at 4°C until transported to the laboratory, generally within 72 hours, for culture-adaptation.10

\textbf{In vitro IC$_{50}$ drug testing.} A SYBR Green I-based \textit{in vitro} IC$_{50}$ drug sensitivity assay was used to test each \textit{P. falciparum} field isolate against CQ and FQ.15–16 Ferroquine was provided by Sanofi-Aventis Corporation (Paris, France), and CQ was provided by the Walter Reed Army Institute of Research (Silver Spring, MD).
Stock drug solutions at concentrations of 1 mg/mL were prepared. Ferroquine was dissolved in absolute ethanol, and CQ was dissolved in 1.5 mL of de-ionized water and 3.5 mL of absolute ethanol. Further dilutions were in complete RPMI 1640 medium to the desired starting concentration, followed by serial two-fold dilutions to generate 10 concentrations across the plates. Dilution ranges were as follows: CQ (3.125–6 nM) and FQ (2.305–4.5 nM). Pre-diluted drug plates were prepared fresh and used immediately or stored at –80°C for not longer than one month before use.

Plasmodium falciparum isolates processed IEV were assayed without culture adaptation. Blood samples with >1% parasitemias were adjusted to 1% parasitemia at 2% hematocrits, and those with ≤1% parasitemias were used unadjusted at 2% hematocrits. For IEV and culture-adapted assays, transfer of parasite samples and drug aliquots onto microculture plates and IC₅₀ values depicted by the SYBR Green I drug assay were as described.

Plasmodium falciparum field isolates obtained from two sites were culture adapted before assay. The isolates were cultured at a 6% hematocrit to establish parasite replication robustness, reaching 3–8% parasitemia within 7–30 days. For IC₅₀ drug assays, *P. falciparum* aliquots were adjusted to a 2% hematocrit and a 1% parasitemia.

Molecular analyses of *P. falciparum* field isolates and reference clones. *Plasmodium falciparum* field isolate DNA for all molecular assays was extracted from FTA filter paper samples or whole blood by using the QIAamp DNA Blood Mini Kit (QIAGEN, Valencia, CA) according to manufacturer’s instructions. Genomic DNA from laboratory clones used as controls was extracted in similar fashion.

A single nucleotide polymorphism (SNP), K76T, in the *Pfcrt* gene, which is well described in Kenya in conferring CQ resistance, was determined as described. For *Pfmdr1*, an estimated copy number was determined by using a 2^-ΔΔCt* method of relative quantification. For the calibrator, we used *P. falciparum* reference clone 3D7 genomic DNA that contained one variant of CQ resistance. For FQ, there is no discriminative IC₅₀ value breakpoint indicative of resistance. We observed no difference between FQ median IC₅₀ values for IEV or culture-adapted isolates versus those of D6 CQ-sensitive and W2 CQ-resistant laboratory reference clones (P > 0.05).

For *P. falciparum* reference clones D6 (CQ sensitive) and W2 (CQ resistant), the median IC₅₀ value was greater than that for FQ (P ≤ 0.05). The IC₅₀ median value against W2 was higher than the 141 nM breakpoint value.

RESULTS

SYBR Green I IC₅₀ drug assays. We collected 146 *P. falciparum* field isolates and assayed 88 IEV and 58 as culture-adapted against CQ and FQ by using an SYBR Green I assay. A successful assay result was defined as a dose-response relationship across the 10 drug dilutions, for one or both drugs, per field isolate.

Individual and median IC₅₀ values (nM) for IEV and culture-adapted *P. falciparum* field isolates against CQ and FQ and *P. falciparum* laboratory reference clones D6 (CQ sensitive) and W2 (CQ resistant) are shown in Figure 1. Median IC₅₀ values for CQ were consistently higher than those for FQ for IEV and culture-adapted isolates. For CQ IC₅₀ values, 17 (21%) of 81 IEV and 12 (21%) of 58 culture-adapted *P. falciparum* isolates had values > 141 nM, which is a previously established discriminative IC₅₀ breakpoint value indicative of CQ resistance. For FQ, there is no discriminate IC₅₀ value breakpoint indicative of resistance. We observed no correlation (cross-resistance) between CQ and FQ in vitro activity.

For *P. falciparum* reference clones D6 (CQ sensitive) and W2 (CQ resistant), the median CQ IC₅₀ value for each clone was greater than that for FQ (P ≤ 0.05). The CQ IC₅₀ median value against W2 was higher than the 141 nM breakpoint value.

Molecular analyses of *P. falciparum* field isolates and laboratory reference clones. The Pfcm mutation T76, which is present in >80% (87 of 108) of *P. falciparum* field isolates, conferred higher median IC₅₀ values for CQ, but not for FQ, in comparison with *Pfcm* wild type K76 (Figure 3A and B). For FQ, the Pfcm genotype had little effect on median IC₅₀ values (Figure 3B). Among all *P. falciparum* field isolates expressing Pfcm mutation T76, the median IC₅₀ value for CQ was higher than that for FQ (P < 0.05, by Mann-Whitney U test). As in earlier work, mixed (wild type plus mutant) and mutant Pfcm
K76T genotypes were combined in some analyses to express a total mutant population. The \textit{Pfmdr1} gene was not amplified in \textit{P. falciparum} field isolates when quantified relative to \textit{P. falciparum} reference clones 3D7 (mean = 1 copy) and multiple-drug resistant Dd2 (mean = 3 copies) (Figure 4A). The proportions of \textit{Pfmdr1} codon SNPs were highest at codon 86 (33%). There were far fewer at codons 184 and 1034 and none at codon 1042, regardless of collection site. The \textit{Pfmdr1} codon 86 genotype (wild type versus mutant) expressed in \textit{P. falciparum} field isolates had little effect on CQ or FQ median IC$_{50}$ values (Figure 4B).

DISCUSSION

In a direct comparison of antimalarial activities of CQ and FQ by using an SYBR Green I \textit{in vitro} assay, we found that FQ was consistently more potent than CQ against \textit{P. falciparum} field isolates obtained in western Kenya, a region to which CQ-resistant \textit{P. falciparum} is endemic. Moreover, FQ showed higher potency than CQ against the well-characterized CQ-resistant \textit{P. falciparum} laboratory clone W2. As expected, most \textit{P. falciparum} field isolates expressed the \textit{Pfcr} mutation (76T), which conferred higher median IC$_{50}$ values for CQ but, notably, not for FQ. Our results indicate that FQ should be used to treat persons with \textit{P. falciparum} malaria, even persons infected with CQ-resistant strains. Superior \textit{in vitro} activity of FQ than of CQ has been reported. Our study extends observations of FQ superiority against recently collected CQ-resistant \textit{P. falciparum} field isolates and the CQ-resistant \textit{P. falciparum} laboratory reference clone W2. The superiority of FQ was evident in field isolates processed IEV or by culture adaptation. The immediate \textit{ex vivo} procedure is a simpler and faster technique that in comparison with culture adaptation, reduces cold storage and processing steps of \textit{P. falciparum} isolates and may reduce clonal selection.

Median CQ IC$_{50}$ values in the SYBR Green I assay for culture-adapted and IEV samples generally paralleled our earlier 3H-hypoxanthine uptake findings in culture-adapted isolates.
suggested that Pfcr76T has a minimal effect on FQ activity. Ferroquine, which is an organo-metallic complex, differs from CQ in diverse ways, including lipophilicity, shape, volume, and electronic profile. These differences facilitate FQ entry into the P. falciparum vacuoles and, as some investigators propose, prevent FQ extrusion conferred by the Pfcr76T mutation, which characterizes CQ-resistant strains. The ferrocene moiety may confer some of the properties of FQ. In parallel with these earlier findings, our study found no association between IC50 values for CQ and FQ, which suggested no cross-resistance.

The Pfmdr1 gene confers multiple drug resistance when more than one copy is present and is common in Southeast Asia. As expected, Kenya P. falciparum field isolates showed no amplification of the Pfmdr1 gene, which is consistent with findings for the wild type, and are not necessarily associated with multi-drug resistance capability. This finding precluded comment on a role of the Pfmdr1 gene copy number on FQ activity. The Pfmdr1 codon 86 genotype had relatively little effect on CQ and FQ IC50 values. Nonetheless, it may be useful to track FQ IC50 values versus Pfmdr1 codon 86 genotypes because P. falciparum FQ resistance markers are not fully identified.

REFERENCES

