Mitochondrial DNA Detects a Complex Evolutionary History with Pleistocene Epoch Divergence for the Neotropical Malaria Vector Anopheles nuneztovari Sensu Lato

Vera Margarete Scarpassa* and Jan E. Conn
Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil; Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York

Abstract. Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene Epoch. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene Epoch for New World anophelines.

INTRODUCTION

Anopheles (Nyssorhynchus) nuneztovari sensu lato (s.l.) Gabaldón is distributed from eastern Panama through northern South America, and in Brazil, it is limited to the Amazon region (Figure 1). This species is an important malaria vector in Colombia and Venezuela, where it exhibits high anthropophily, endophagic-exophagic and exophilic behaviors and a peak biting time around midnight.2–4 In Amazonian Brazil and Peru, An. nuneztovari has been found infected with Plasmodium sp.5–9 Although most Brazilian populations are exophagic and mainly zoophilic, with a peak biting time around sunset, in some localities in Pará state, anthropophagic and endophagic behaviors have been encountered,10 and it has been incriminated as a local vector in Amapá State.9 Overall, An. nuneztovari s.l. from Amazonian Brazil seems not to sustain malaria transmission or to be incapable of causing malaria outbreaks in the absence of the primary vector Anopheles darlingi Root.3,11

Approximately half of the anopheline vector species belong to sibling/cryptic species complexes.12 The presence of complexes can cause heterogeneous patterns of malaria transmission, sometimes resulting in reduced vector control effectiveness or even in failure.13 The main factors that affect the capacity of a vector to transmit malaria parasites are abundance, anthropophily, infection rate and females longevity,14 which may vary between cryptic species, lineages or genetically structured populations.

South America is particularly rich in species diversity.15 This is also true for anophelines, especially in northern South America, where there are closely related species groups, species complexes and species with deep genetic differentiation,16 and the most studied species have diverged during the Pleistocene Epoch. With the advent of the use of multiple molecular genetic markers, several new species have been described and others have been resurrected from synonymy. Examples include An. triannulatus Neiva and Pinto, An. albiparalis Lynch-Arribalzaga, An. oswaldoi Peryassú, and An. nuneztovari.11,12,17,18 Some of these species are implicated in local malaria transmission, adding to the importance of such discoveries.

On the basis of differences in host preference and biting behavior, Elliott17 first proposed that populations of An. nuneztovari s.l. from Amazonian Brazil and Colombia/Venezuela comprised two allopatric races, possibly cryptic species. This hypothesis was corroborated by cytogenetic results.19,20 Subsequently, morphologic, isoenzymatic, and molecular studies found significant differentiation between the two allopatric races, but no notable evidence to support a species complex.21–27 However, within Amazonian Brazil, internal transcribed spacer 2 (ITS2)22 and mitochondrial DNA (mtDNA)–restriction fragment length polymorphism (RFLP)28 analyses indicated multiple lineages, and a lack of gene flow between the central and eastern regions.27 A recent study using nuclear white gene sequences described five lineages in An. nuneztovari s.l.: two in Colombia and Venezuela and three in Amazonian Brazil and Bolivia.28 In contrast to previous studies, Mirabello and Conn28 detected deep genetic differentiation among lineages, together with sympathy at five localities in Bolivia, Brazil, and Venezuela.

The morphologic studies of Bergo and others29 suggested a new species in Amapá State, Brazil. On the basis of male genitalia and phylogenetic analyses of ITS2, cytochrome oxidase subunit I (COI) gene, and white gene sequences of samples from Amazonian Brazil, Calado and others30 resurrected An. goeldii Rozeboom and Gabaldón from earlier synonymy with An. nuneztovari and proposed distinctive geographic distributions: An. goeldii in Amazonian Brazil, and An. nuneztovari s.s. in Colombia and Venezuela. However, Gabaldón1 initially resurrected An. goeldii when he revised the morphologic differences between An. goeldii and An. nuneztovari, which are described below.

The discrepancy between results from various studies is likely caused by multiple factors. These factors include undersampling in some key geographic regions, lack of progeny rearing of
field-collected specimens or crossing experiments between suspected taxa, distinct modes and rates of evolution of the various molecular markers used, and a recent temporal framework for evolutionary processes within An. nuneztovari s.l.30

CURRENT TAXONOMIC SITUATION

Anopheles nuneztovari was originally described from San Carlos, Cojedes State, in western Venezuela, on the basis of on male genitalia.31 Rozeboom and Gabaldón32 described An. goeldii from morphology of eggs, larvae, females, and males collected in Belterra (Fortlandia), on the Tapajós River, in Pará State, Brazil. The synonymy of An. goeldii with An. nuneztovari was proposed by Floch and Abonnenc,33 and accepted by Lane34 and Faran,1 although Faran believed that An. goeldii could be a valid species. The revision of Gabaldón3 supported the taxonomic status of An. goeldii on the basis of differences in the male mesosome leaflets (leaflets = small spines), which are long and strongly sclerotized in An. nuneztovari and short and weakly sclerotized in An. goeldii. In larvae, the spiracular plate arms are absent or rudimentary in An. nuneztovari and longer and visible in An. goeldii.3 Currently, An. goeldii is a valid species.18

Another closely related species, An. dunhami Causey, collected in Tefé, Amazonas State, Brazil, was described as a new taxon35 by using the mesosome of male genitalia to differentiate it from An. nuneztovari and An. goeldii. The egg, larvae, and adult color pattern of An. dunhami are similar to that of An. goeldii.35 In 1953, Lane34 synonymized An. dunhami with An. nuneztovari without comment. Subsequently, An. dunhami was resurrected as a distinct species on the basis of morphology36 and multiple markers.37 Several molecular markers can now be used to reliably separate An. dunhami and An. nuneztovari s.l.37–39 Recent records have extended the geographic distribution of An. dunhami to include Tabatinga,37 Coari38 and Parintins,38 Amazonas State, Brazil, and Amazonian Colombia,39 overlapping with the closely related species An. nuneztovari s.l. (Figure 1).

We investigated the phylogeographic structure of An. nuneztovari s.l. from 17 localities in northern South America (Amazonian Brazil, Bolivia, Colombia, Suriname, and Venezuela) to estimate the number of clades and levels of divergence by using an 873-basepair fragment of the mtDNA COI gene. Within Amazonian Brazil, we included 11 localities,5 of which have not been studied (MA, PI, BR, CS, CR; Figure 1), to address three questions. 1) How many lineages exist within

Figure 1. Geographic distribution of Anopheles nuneztovari s.l. (larger shaded area) and An. dunhami (smaller shaded area), and the collection sites of these species in northern South America. See Table 1 for locality abbreviations.
Amazonian Brazil? 2) What is the level of genetic differentiation among them? 3) Is there evidence of reciprocal monophyly, particularly between populations from Colombia/Venezuela (anthropophilic and endophagic-exophagic) versus those from Amazonian Brazil (predominantly zoophilic and exophagic)? Knowledge of the occurrence and geographic distribution of potential species or lineages is relevant to better understand the involvement of each in malaria transmission throughout the range of *An. nuneztovari* s.l.

MATERIALS AND METHODS

Mosquito collection and identification. Samples of *An. nuneztovari* s.l. were collected from 11 sites in Amazonian Brazil (MA, NM, BL, IT, TU, PI, MN, BR, CS, CR, PV); 1 each in Bolivia (GU), Colombia (SI), and Suriname (VI); and 3 in Venezuela (BA, RS, EJ) (Figure 1). The information on the collection sites, including abbreviations, co-ordinates, and sample sizes are shown in Table 1. The BA site is near the type locality of *An. nuneztovari* in Venezuela. Specimens were captured between 6:00 pm and 9:00 pm feeding on cattle, resting in stables, or when landing on humans. The standard human landing catch protocol was reviewed and approved by the Institutional Review Board of the National Institute of Research of the Amazon, the Brazilian Ministry of Science, Technology and Innovation, Brazil by the U.S. New York State Department of Health Institutional Review Board. The mosquitoes analyzed from IT, MN, PV, VI, GU, RS and EJ were wild-caught females, and the specimens from the remaining localities were the offspring (F1) of progeny broods reared to adulthood. All mosquitoes were morphologically identified and immediately stored at −80°C until analysis.

DNA extraction, polymerase chain reaction, and sequencing. Total DNA was extracted from individual mosquitoes by using a phenol-chloroform method. The primers used to amplify the 873-basepair COI fragment and the polymerase chain reaction amplification conditions are described by Joy and Conn. After visualization by electrophoresis on 1% agarose gels, the polymerase chain reaction products were cleaned by using CentriSpin 40 columns (Princeton Separations Freehold, NJ) and sequenced at the Wadsworth Center Applied Genomics Technology Core (New York State Department of Health, Albany NY). All fragments were sequenced in both directions.

Statistical analysis. The COI sequences were edited by using Sequencer 3.0 (Gene Codes Corp., Ann Arbor, MI) and imported together into programs for statistical analyses. The 873-basepair fragment analyzed corresponds to positions 639–1512 of the mitochondrial genome of *Drosophila yakuba* Burla.

Table 1

<table>
<thead>
<tr>
<th>Locality, state (abbreviation)</th>
<th>Co-ordinates (latitude, longitude)</th>
<th>No.</th>
<th>Haplotype frequency</th>
<th>Clades/subclades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arquipelágio do Maruanaun,</td>
<td>0.29333, −51.27361</td>
<td>2</td>
<td>H1(2)</td>
<td>I</td>
</tr>
<tr>
<td>Amapá (MA)</td>
<td>−0.11667, −51.30750</td>
<td>9</td>
<td>H2(3), H3(1), H4(1), H5(1), H6(1), H7(1), H8(1)</td>
<td>II-A</td>
</tr>
<tr>
<td>Nova Mazagão, Amapá (NM)†</td>
<td>−1.44611, −48.49722</td>
<td>3</td>
<td>H9(3)</td>
<td>I</td>
</tr>
<tr>
<td>Belém, Pará (BL)</td>
<td>−4.25000, −55.96111</td>
<td>7</td>
<td>H10(1), H11(1), H12(1), H13(1), H14(1), H15(1), H16(1)</td>
<td>I, II-B</td>
</tr>
<tr>
<td>Itaituba, Pará (IT)†</td>
<td>−3.70639, −49.46500</td>
<td>4</td>
<td>H17(2), H22(2)</td>
<td>I</td>
</tr>
<tr>
<td>Tucuruí, Pará (TU)</td>
<td>−3.42516, −51.00361</td>
<td>10</td>
<td>H18(1), H19(2), H20(2)</td>
<td>I</td>
</tr>
<tr>
<td>Comunidade Pitinga, Pará (PI)</td>
<td>−3.09333, −59.93083</td>
<td>10</td>
<td>H15(1), H23(1), H24(1), H25(1), H26(2), H27(2), H28(2), H29(1)</td>
<td>II-A, II-B</td>
</tr>
<tr>
<td>Manaus, Amazonas (MN)†</td>
<td>−3.84417, −60.37389</td>
<td>8</td>
<td>H30(1), H31(1), H32(1)</td>
<td>I, II-A, II-B</td>
</tr>
<tr>
<td>BR-174 Highway, Km 206,</td>
<td>−4.09611, −63.13944</td>
<td>4</td>
<td>H15(2), H26(2), H33(1), H34(1), H35(1), H36(1)</td>
<td>I, II-B</td>
</tr>
<tr>
<td>Amazonas (BR)†</td>
<td>−8.00750, −63.91639</td>
<td>5</td>
<td>H37(3), H38(1)</td>
<td>II-B</td>
</tr>
<tr>
<td>Castanho, Amazonas (CS)†</td>
<td>−8.87050, −63.91639</td>
<td>2</td>
<td>H19(2), H20(2)</td>
<td>I</td>
</tr>
<tr>
<td>Coari, Amazonas (CR)</td>
<td>0.50833, −54.96667</td>
<td>9</td>
<td>H24(1), H39(7), H40(1)</td>
<td>I, II-A</td>
</tr>
<tr>
<td>Porto Velho, Rondônia (PV)</td>
<td>−10.85000, −65.35000</td>
<td>5</td>
<td>H10(5)</td>
<td>I</td>
</tr>
<tr>
<td>Suriname</td>
<td>−3.83139, −77.07972</td>
<td>10</td>
<td>H43(2), H44(1), H45(4), H46(1), H47(2)</td>
<td>II-C</td>
</tr>
<tr>
<td>Victoria, Brokopondo (VI)†</td>
<td>5.08333, −54.96667</td>
<td>2</td>
<td>H41(1), H42(1)</td>
<td>II-C</td>
</tr>
<tr>
<td>Bolivia</td>
<td>−8.61667, −70.18333</td>
<td>9</td>
<td>H41(5), H48(3), H49(1)</td>
<td>II-C</td>
</tr>
<tr>
<td>Guayaramirin, Beni (GU)</td>
<td>8.90000, −72.63333</td>
<td>9</td>
<td>H42(7), H50(2)</td>
<td>II-C</td>
</tr>
<tr>
<td>Colombia</td>
<td>9.55000, −60.37389</td>
<td>2</td>
<td>H51(1), H52(1)</td>
<td>II-C</td>
</tr>
<tr>
<td>Sítonela, Buenaventura,</td>
<td>8.87050, −63.91639</td>
<td>9</td>
<td>H53(1)</td>
<td>I</td>
</tr>
<tr>
<td>Valle (SI)</td>
<td>−3.39333, −59.93083</td>
<td>1</td>
<td>H59(1)</td>
<td>I</td>
</tr>
</tbody>
</table>

* No. = sample size; H1–H52 = haplotypes of *An. nuneztovari* s.l.; H53–H59 = haplotypes of *An. dunhami*; H60 and H61 = haplotypes of *An. darlingi*. Values in parentheses are numbers of individuals observed for each haplotype. Underlined haplotypes are shared among localities.

† Locations with two or three sympatric clades/subclades.
Eight of 121 specimens of this study, morphologically identified as *An. nuneztovari* s.l., were molecularly clustered as *An. dunhami* on the basis of sequence comparison of one descendant of a progeny from the type locality,\(^35\) which had been identified as *An. dunhami* by using multiple markers.\(^37\)

A statistical parsimony network was generated by using TCS 1.21\(^43\) at the 95% confidence level, and homoplases were resolved using the rules in Crandall and Templeton.\(^44\) Phylogenetic relationships were inferred by maximum-likelihood (ML) analysis implemented in the Treefinder Program\(^45\) on the basis of the Generalized Time Reversible GTR + G + I Proportion model selected by jModelTest,\(^46\) with 1,000 replicates. *Anopheles dunhami* and *An. darlingi* sequences were used as the outgroup. Bayesian inference (BI) analysis was performed with Mr. Bayes version 3.1\(^47\) using the model TPM2uf + I + G determined by the jModelTest.\(^46\) The settings were two simultaneous independent runs of the Markov Chain Monte Carlo for 20 million generations, sampling every 1,000 generations with a burn in of 50%. *Anopheles dunhami* sequences were included in the ingroup, and *An. darlingi* sequences were used as the outgroup.

Intra-population diversity measures for each sample and for haplotype clade and subclades were implemented in DnaSP 4.0\(^48\) and Arlequin 3.1.\(^49\) The haplotype and nucleotide diversities were not calculated for the samples MA, GU, and EJ because of small sample size (n = 2).

Neutrality tests were calculated in DnaSP 4.0.\(^48\) The D test of Tajima\(^50\) and the D and F tests of Fu and Li\(^51\) were used to test for strict neutrality, and the Fs test of Fu,\(^52\) and the R\(_s\) test of Ramos-Onsins and Rosas\(^53\) were used to test population size stability. The Fs and R\(_s\) tests are the most powerful tests for detecting population expansion and genetic hitchhiking, and the D and D and F tests are the most effective tests for detecting background selection. The mismatch distribution was computed for clade I and the three subclades and for the entire data set in Arlequin 3.1\(^49\) with 1,000 permutations. To quantify the smoothness of the mismatch distribution, we calculated the raggedness (r) in Arlequin 3.1.\(^49\)

Sequence divergence among *An. nuneztovari* s.l. haplotypes and between *An. nuneztovari* s.l. and *An. dunhami* haplotypes was estimated by using the uncorrected p genetic distance in PAUP 4.0b1.\(^34\) The sequence divergences among clades and subclades were calculated by using the Kimura two-parameter evolutionary model in MEGA 4.0,\(^55\) and the divergence time was estimated assuming two distinct mutation rates: 2.3% estimated for the COI gene in insects\(^86\) and 11.4% from the complete Drosophila mtDNA genome\(^25,58\) per million years. Haplotype sequences are deposited in GenBank under the accession numbers AF270915 to AF270932, and JN692127 to JN692171.

RESULTS

In *An. nuneztovari* s.l., the 113 sequences contained 63 (7.2%) polymorphic sites, and 52 (6.0%) sites were parsimony informative. The mean base composition was rich in A + T (70.2%). Fifty-two haplotypes were observed, with 28 (53.8%) singletons, 14 (26.9%) shared among individuals within localities, and 10 (19.2%) shared between localities (Table 1). The most frequent and ancestral haplotype (n = 7; H26) was detected in three Amazonas State sites (MN, BR, and CS). Haplotypes H3, H10, H24, H41, and H42 were shared between geographically distant localities: NM and BR, IT and PV, MN and VI, GU and BA, and GU and RS, respectively. No shared haplotypes were observed between central (MN, BR, CS, CR, and IT) and eastern (BL, TU, and PI) regions from Amazonian Brazil, or between Amazonian Brazil plus Suriname and Bolivia/Colombia/Venezuela.

All haplotypes were connected in the network in which four clades were distinguished (Figure 2). The haplotypes from Amazonian Brazil plus Suriname were located in I, II-A and...
II-B, differing from one another by 9–11 mutational steps. In contrast, haplotypes from Bolivia/Colombia/Venezuela were all in II-C. The ML and BI analyses yielded trees with identical topologies, but varying levels of support. The BI tree and the distribution of the clades are shown in Figures 3 and 4, respectively. Two major monophyletic clades were observed. Clade I, the largest, comprised individuals of all regions analyzed from Amazonian Brazil and Suriname. Clade II, more basal, consisted of three subclades. Subclade II-A included individuals from northeastern and central Amazonian Brazil and Suriname. Subclade II-B was not well supported for ML and included individuals from central Amazonian Brazil. Subclade II-C included individuals from Bolivia/Colombia/Venezuela. Several localities had haplotypes clustered in multiple subclades (Table 1). All *An. dunhami* haplotypes were strongly supported on an isolated branch.

Mean ± SE values of *h* and *π* diversities (0.976 ± 0.005 and 0.01347 ± 0.00039, respectively) and *K* (11.690) were fairly high (Table 2). The highest values of *h*, *π*, and *K* were found in MN, BR, CS, and IT (central Amazonian Brazil), followed by NM (northeastern Amazonian Brazil). Both *h* and *π* diversities were highest in clade I (Table 3).

The neutral evolution tests showed negative and non-significant values in most cases, except subclade II-C (positive and non-significant for *D* test of Tajima) (Table 3). This finding may reflect an excess of rare alleles consistent with either positive selection or an increase in population size. Results of the *F*5 test of Fu were negative and significant for clade I, subclade II-C, and combined data, indicating significant deviations from equilibrium. Mismatch distribution for clade I, subclades II-A and II-C, and combined data showed unimodal distribution, suggesting populations at non-equilibrium (Figure 5). Subclade II-B had a bimodal distribution and could represent two colonization events. The raggedness index (*r*) for all groups did not reject the null hypothesis of sudden demographic expansion. However, for the sum of squared deviations goodness of fit test, only subclade II-B rejected the null hypothesis (*P* = 0.04). Consequently, the time since the population expansion was estimated by using *t* = τ/2μ, where μ is the mutation rate per site per generation. The *Drosophila* mutation rate of 10^-8/site/year and 10 generations/year was used in this calculation. The estimated expansion times for clade I and three subclades were during the Pleistocene Epoch (approximately 8,768–48,293 years ago). Subclade II-B populations expanded more recently, approximately 8,768 years ago.

Figure 3. Bayesian Inference (BI) topology of the 59 haplotypes of *Anopheles nuneztovari* s.l. and *Anopheles dunhami* inferred under the TPM2uf + I + G model. Numbers on each branch represent posterior probabilities in BI (above branch) and bootstrap proportions in ML (below branch). *Anopheles darlingi* was used as outgroup.
In *An. nuneztovari* s.l., the uncorrected *p* genetic distance among haplotypes was low to moderate (0.12–2.98%) and overlapped with the distance between *An. nuneztovari* s.l. and *An. dunhami* haplotypes (1.6–3.4%; mean = 2.6%). The range of genetic distance was higher within Amazonian Brazil (0.12–2.98%) than between Amazonian Brazil and Bolivia/Colombia/Venezuela (1.03–2.52%). Sequence divergence determined by using the Kimura two-parameter model between clades and subclades was also low (Table 4). However, the mean *K* values among I, II-A, II-B, and II-C were much higher than within them (Tables 3 and 4). Estimated time of divergence among the four groups suggests diversification during the Pleistocene Epoch.

The seven haplotypes observed for *An. dunhami* showed uncorrected *p* genetic distance from 0.12% to 1.83%, and new records for this species were found in IT, MN, and SM. The distance between *An. dunhami* and *An. darlingi* was 8.9%, and the distance between *An. nuneztovari* s.l. and *An. darlingi* was 9.4%.

DISCUSSION

Phylogenetic analyses supported four reciprocally monophyletic clades for *An. nuneztovari* s.l., three represented by Amazon Basin samples (divergence = 1.6–2.1%) distributed in

Figure 4. Estimated geographic distributions of clade I and subclades II-A, II-B, and II-C of *Anopheles nuneztovari* s.l. See Table 1 for locality abbreviations.

Table 2

<table>
<thead>
<tr>
<th>Locality</th>
<th>No.</th>
<th>Ts/Tv</th>
<th>Haplotype observed</th>
<th>NS</th>
<th>K</th>
<th>Haplotype diversity (h) ± SD</th>
<th>Nucleotide diversity (π) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>2</td>
<td>0/0</td>
<td>1 NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NM†</td>
<td>9</td>
<td>21/2</td>
<td>7 23</td>
<td>6.861</td>
<td>0.917 ± 0.092</td>
<td>0.00786 ± 0.00236</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>3</td>
<td>0/0</td>
<td>1 NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>IT†</td>
<td>7</td>
<td>24/5</td>
<td>7 29</td>
<td>12.571</td>
<td>1.000 ± 0.076</td>
<td>0.0146 ± 0.00203</td>
<td></td>
</tr>
<tr>
<td>TU</td>
<td>10</td>
<td>9/0</td>
<td>5 9</td>
<td>3.333</td>
<td>0.867 ± 0.071</td>
<td>0.0038 ± 0.00053</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>4</td>
<td>1/0</td>
<td>2 1</td>
<td>0.667</td>
<td>0.667 ± 0.204</td>
<td>0.00076 ± 0.00023</td>
<td></td>
</tr>
<tr>
<td>MN†</td>
<td>10</td>
<td>21/4</td>
<td>8 25</td>
<td>10.133</td>
<td>0.956 ± 0.059</td>
<td>0.01161 ± 0.00164</td>
<td></td>
</tr>
<tr>
<td>BR†</td>
<td>10</td>
<td>21/5</td>
<td>7 26</td>
<td>12.244</td>
<td>0.913 ± 0.077</td>
<td>0.01421 ± 0.00150</td>
<td></td>
</tr>
<tr>
<td>CS†</td>
<td>8</td>
<td>30/2</td>
<td>6 32</td>
<td>11.893</td>
<td>0.929 ± 0.084</td>
<td>0.01382 ± 0.00554</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>4</td>
<td>10/0</td>
<td>2 10</td>
<td>5.000</td>
<td>0.500 ± 0.265</td>
<td>0.00573 ± 0.00304</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>5</td>
<td>0/0</td>
<td>1 NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Suriname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI†</td>
<td>9</td>
<td>13/3</td>
<td>3 16</td>
<td>3.556</td>
<td>0.417 ± 0.191</td>
<td>0.00407 ± 0.00284</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU</td>
<td>2</td>
<td>4/0</td>
<td>2 4</td>
<td>4.000</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>10</td>
<td>2/3</td>
<td>5 5</td>
<td>1.578</td>
<td>0.822 ± 0.097</td>
<td>0.00181 ± 0.00041</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>9</td>
<td>1/1</td>
<td>3 2</td>
<td>0.778</td>
<td>0.639 ± 0.126</td>
<td>0.00089 ± 0.00023</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>9</td>
<td>2/0</td>
<td>2 2</td>
<td>0.778</td>
<td>0.389 ± 0.164</td>
<td>0.00089 ± 0.00038</td>
<td></td>
</tr>
<tr>
<td>EJ</td>
<td>2</td>
<td>0/2</td>
<td>2 2</td>
<td>2.000</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>9,353/1,588</td>
<td>52 63</td>
<td>11,690</td>
<td>0.976 ± 0.005</td>
<td>0.01347 ± 0.00039</td>
<td></td>
</tr>
</tbody>
</table>

*No. = sample size; Ts/Tv = transitions/transversions; NS = no. of polymorphic sites; K = average number of nucleotide differences; NA = not analyzed. See Table 1 for locality abbreviations.
†Locations with two or three sympatric haplotype clade/subclades.
two major clades (I and II) and one represented by Bolivia/Colombia/Venezuela samples (divergence = 1.7%) restricted to basal subclade II-C. The haplotype network also indicated a substantial genetic division between them. Taken together, these results suggest incipient speciation or distinct species within *An. nuneztovari* s.l. This finding is partially congruent with the nuclear white gene results of Mirabello and Conn, who hypothesized three clades in the Amazon Basin plus Bolivia and two in Colombia and Venezuela. Clade I and subclade II-C may correspond, respectively, to lineage II-A and II-B whereas subclades II-A and II-B seem not to correspond to lineages 1 and 3 from Mirabello and Conn, samples from these two regions had no shared haplotypes and were recognized as distinct lineages by Conn and others, which could indicate a barrier to gene flow. If this suggestion is correct, this finding may explain distinct behavioral patterns of these mosquitoes.

Unlike earlier studies that detected higher levels of differentiation between Amazon Basin and Colombia/Venezuela populations, our results identified the deepest divergence and earliest divergence time between clade I and subclade II-B, both within the Amazon Basin. These discrepant results could have been caused by more localities from the central Amazonian Brazil being sampled in the present study. This region may be pivotal because it includes the most divergent subclade (II-B) and the oldest haplotype. These data suggest that additional incipient species may exist in this complex within the Amazon Basin.

Clade I consisted nearly exclusively of Amazonian haplotypes (except CR) and several smaller subdivisions. One of these subdivisions, strongly supported by BI and ML analyses, grouped most individuals from NM (7 of 9) and few from BR (3 of 10) and CS (1 of 8). All of these individuals shared three transitions that were rare or absent in the remaining individuals analyzed. This finding may suggest a potential barrier to gene flow, supporting the findings of Bergo and others of a new putative species in Amapá State. Calado and others proposed that *An. nuneztovari* s.l. from Amazonian Brazil could be *An. goeldii*. A comparative analysis using the small overlapping fragment between our data and those authors suggested that individuals of this clade I subdivision could be *An. goeldii*. As a consequence, this species could exist in northeastern and central Amazonian Brazil. This analysis also indicated that some clade I haplotypes from PI and IT, Pará State, were closely related to *An. goeldii* haplotypes found by Calado and others. If these haplotypes represent *An. goeldii*, it also could exist in the eastern region of Amazonian Brazil, and its populations should be differentiated genetically.

Curiously, *An. nuneztovari* s.l. from some localities in Pará State (eastern region) exhibit accentuated anthropophily and endophagy. However, mosquitoes collected from the central Amazonian region have been mainly zoophagic and exophilic. In the present study and in the study of Scarpassa and others, samples from these two regions had no shared haplotypes and were recognized as distinct lineages by Conn and others, which could indicate a barrier to gene flow. If this suggestion is correct, this finding may explain distinct behavioral patterns of these mosquitoes.

Subclades II-A and II-B samples may represent distinct evolutionary lineages or species with overlapping ranges in central Amazonian Brazil, likely caused by historical fragmentation with differentiation, followed by population expansion and secondary contact. Therefore, in addition to *An. goeldii* as discussed above, other lineages or species could exist in the *An. nuneztovari* complex in this region. Some support for this suggestion comes from a study of male genitalia of specimens from Manaus. Two distinct forms were observed: one was compatible with *An. goeldii* and the other has not yet been determined (Silva HP, Lima CP, Tadei WP, unpublished data).

Subclade II-C, represented by samples from Bolivia/Colombia/Venezuela, is basal and shares no haplotypes with any other geographic region, supporting results of earlier studies. Morphologic comparisons showed that the apex of the aedeagus is distinct between samples from the Amazon Basin and Colombia plus Venezuela. These data combined with molecular analyses led to the resurrection of *An. goeldii*. In the present study, divergence among haplotypes was low to moderate. However, this finding was consistent with the data of Calado and others and with divergence estimates of other sister-taxa in the *Nyssorhynchus* subgenus. Additionally, populations of *An. nuneztovari* s.l. from the Amazon Basin and Colombia/Venezuela can be differentiated by a fixed inversion on the X chromosome. Taken together, our results suggest that subclade II-C samples could be *An. nuneztovari* s.s., which may be in the process of separating from *An. goeldii* and from other lineages or incipient species present in the
In addition, on the basis of our results and those of previous studies, we propose that two species may co-occur in Bolivia, one of which is likely to be An. nuneztovari s.s. and the other An. goeldii or lineage 5 reported by Mirabello and Conn. Colombia (SI) haplotypes were not shared with Venezuela and/or Bolivia haplotypes. The isolation in SI can reflect the eastern Andes Cordillera acting as a possible physical barrier to dispersal between this and others populations.

In this study, intra-population diversity measures were fairly high in An. nuneztovari s.l., as detected in a previous study in this species, and in other anophelines. The samples from the Amazon Basin tended to have higher genetic diversity, in particular nucleotide diversity, than those from Bolivia/Colombia/Venezuela. These differences were congruent with those of previous mitochondrial and nuclear gene studies and can be indicative of cryptic species, or possibly differences in effective population size (Ne) or other events related to the history of these populations. The highest genetic diversity was observed for localities in the central region of Amazonian Brazil. In general, older populations have a higher diversity than younger populations. On the basis of this criterion and the presence of the oldest haplotype, the central Amazonian Brazil region may represent the ancestral area of this species, as recently proposed for two similarly distributed anophelines.

The central region shared more haplotypes with geographically distant localities (NM, PV, and VI, which are approximately 1,100 km apart). Additional evidence indicates that this region may represent the ancestral area. Also, two haplotypes from Bolivia (GU) were shared with more frequent Venezuelan haplotypes (BA and RS, which are approximately 2,000 km apart), but not with PV (approximately 280 km apart). Similarly, ITS2 sequences clustered populations from Bolivia/Colombia/Venezuela into a single group, and this result was also observed with the white gene. The sharing of haplotypes across great distances may be the result of isolation, followed by secondary contact in an area known for its complex geologic changes.

Pleistocene epoch divergence has been detected for a wide range of insect species, including disease vectors, suggesting climatic changes as an important force driving the speciation in the Neotropical region. In the present study, the divergence time estimated among all clades and subclades supported diversification during the Pleistocene Epoch. Results of the Fs test of Fu suggested demographic expansion for clade I, subclade II-C, and combined data. The mismatch distribution depicted populations at non-equilibrium for all groups, although the sum of squared deviations goodness of fit test did not reject the null hypothesis, except for subclade II-B. The departure from equilibrium, the star-like network,
and lowest τ for this subclade indicates that it experienced expansion more recently than the other clades (estimated to have occurred 8,768 years ago). Additionally, the bimodal distribution visualized for subclade II-B suggests that it may have undergone two bottlenecks or colonization events. If this suggestion is correct, the deeper divergence for this subclade could be explained by genetic drift and the ancestral haplotype persisting during these events. Taken together, climatic changes, such as precipitation decrease, more arid conditions, and forest fragmentation, which occurred in the Pleistocene Epoch, likely contributed to specialization in this complex.

These findings may help to clarify the involvement of *An. nuneztovari* complex members in malaria transmission, especially in Amazonian Brazil, where its hypothesized vector competence is still controversial.

The *COI* fragment analyzed clearly separated *An. nuneztovari* s.l. from *An. dunhami*. On the basis of this result, we report three new records for *An. dunhami* in Amazonian Brazil, and its range may be more extensive than previously believed. The low genetic distance found between these two species (mean = 2.6%) and results of previous studies, including multiple markers, isozymes, ITS2, *COI* and white gene sequences, strongly suggest recent divergence. Given that *An. nuneztovari* s.l. was detected infected with *Plasmodium* species in Amazonian Brazil and it was implicated as a local vector in Amapá State, the accurate identification of these species is important for vector control strategies in areas where they are sympatric.

Received March 15, 2011. Accepted for publication August 7, 2011.

Acknowledgments: We thank several teams from Fundação Nacional de Saúde, Amapá, Amazonas, and Pará States, Brazil, for logistical support; Dr. G. Atlantic and C. Viveros (Ministerio de Salud and Servicio de la Erradicación de Malaria, Buenaventura, Colombia), Silvia Hurtado (Instituto del Salud de Pacífico, Buenaventura, Colombia), and Marco F. Suarez (Universidad del Valle, Cali, Colombia) for collecting samples in Sitronela, Buenaventura, and Valle, Colombia; and Wanderli Pedro Tadei (Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil) for the logistical support during collections of anophelines in Amazonian Brazil; Dr. Yadira Rangel Puertas (Universidad del Caracas, Caracas, Venezuela) for generously sending us samples from Barinas, Venezuela; and Sara A. Bickersmith (Watson Center, Albany, NY) for kindly helping with Bayesian inference statistical analyses.

Financial support: This study was supported by INPA/MCT&D, CPq/CT-Amazônia (Process no. 575482/2008-7), FAPEAM-Amazonas State, to Vera Margarete Scarpassa and National Institutes of Health grant R01 AI54139 to Jan E. Conn.

Authors’ addresses: Vera Margarete Scarpassa, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araujo, Bairro Aleixo, Manaus, Amazonas, Brazil; Jan E. Conn, Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, and Department of Biomedical Sciences, School of Public Health, State University of New York, Empire State Plaza, Albany, NY.

Reprint requests: Vera Margarete Scarpassa, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araujo, no. 2936, Bairro Aleixo Manaus, CEP 69060-001, Amazonas, Brazil, E-mail: vera@inpa.gov.br.

REFERENCES

68. Roussetti DF, Mann de Toledo P Góes AM, 2005. New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution. *Quat Res* 63: 78–89.
