Short Report: Investigation of Potential Zoonotic Transmission of Cryptosporidiosis in Southern India

Priya Rajendran, Sitara Swarna Rao Ajjampur, Divya Chidambaram, Deepthi Kattula, Deva Prasanna Rajan, Honorine Ward, and Gagandeep Kang

Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India; Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts

Abstract. The common species and subgenotypes causing cryptosporidiosis were studied in 394 children and 627 animals with diarrhea in Vellore in southern India. Although no zoonotic strains were identified in 13 infected children, 1 of 12 infected animals had *C. hominis*, indicating the potential for cross-species transmission. This study also reports *C. xiaoii* for the first time in India.

Cryptosporidiosis is a common parasitic infection causing diarrhea in humans and animals. Although diarrhea in live-stock results in economic loss, symptomatic and asymptomatic infections in animals have the potential for transmission and are a threat to public health.1 Cryptosporidium spp. are generally considered to be host specific. Cryptosporidium galli and *C. baileyi* are found predominantly in chickens, *C. muris* in rodents, *C. canis* in dogs, *C. felis* in cats, *C. suis* in pigs, and *C. meleagris* in turkeys,2 and in recent years, *C. xiaoii* in sheep and goats.3–5 In cattle, although *C. parvum* is seen in calves, *C. bovis*, *C. ubiquitum*, *C. ryanae*, and *C. andersoni* have been reported from heifers and adult cows.6 In humans, cryptosporidiosis is predominantly caused by *C. hominis* and *C. parvum*, with occasional reports of zoonotic species including *C. meleagris*, *C. felis*, and *C. canis*.6

In India, there have been numerous studies of cryptosporidiosis in humans and a few in animals,7–9 but only one recent study from eastern India has investigated zoonotic transmission.10 In previous studies from Vellore, we identified *C. hominis* as the predominant species in children with diarrhea from the community and hospital,11,12 with differences in the distributions of subgenotypes depending on the study setting. In this study, we explored the potential for zoonotic transmission of cryptosporidiosis in this region by comparing cryptosporidial species in animals and children with diarrhea in the same geographic area.

Diarrheal samples from animals were collected from a veterinary clinic and several dairy farms near Vellore during February 2007–May 2008. At the dairy farms, diarrheal samples from cows alone were collected. At the veterinary clinic, samples from cows, buffaloes, bullocks, and goats were collected. Fecal samples were collected from children less than five years of age who were hospitalized during January 2003–May 2006 for diarrhea, defined as the passage of three or more watery stools in a 24-hour period.11 This study was approved by the Institutional Review Board of Christian Medical College, Vellore. Permission was obtained from the chief veterinarian and the dairy unit manager to collect animal samples. For samples from children enrolled in this study, informed consent was obtained from parents or guardian.

Animal fecal samples were subjected to proteinase K (2 μg/mL in 20 mM Tris, pH 7.5, 10 mM EDTA, 0.1% sodium dodecyl sulfate) digestion for one hour. A published extraction protocol was then carried out by using alkaline (1M KOH and dithithreitol), acid (25% HCl and 2 M Tris HCl), and treatment with phenol-chloroform, followed by extraction using the Qiamp DNA Stool Minikit (Qiagen, Valencia, CA).14 DNA from fecal samples of children was extracted by using the same kit without pre-treatment of samples.

Nested polymerase chain reaction (PCR) specific for the small subunit (SSU) ribosomal RNA locus15 was used to screen *Cryptosporidium* spp., followed by restriction fragment length polymorphism (RFLP) for species determination (http://cryptodb.org/cryptodb/) and *Cpgr40/15* PCR-RFLP for subgenotyping by using previously published primers and protocols. Additionally, PCRs specific for the heat-shock protein 70 (HSP-70) and actin loci were conducted for *C. bovis* isolates identified by RFLP by using published primers.3 Samples with ambiguous PCR-RFLP results and representative HSP-70 and actin PCR products were sequenced (ABI PRISM 310 Genetic Analyzer; Applied Biosystems, Foster City, CA). Multiple sequence alignments were carried out using MUSCLE with sequences representative of different species/ subgenotypes, followed by phylogenetic analysis by using PhyML and tree construction by using TreeDyn software (Phylogeny.fr software, version 2).17 All sequences from this study were deposited in GenBank under accession nos. HM627525–HM627531.

A total of 627 samples from animals with diarrhea were collected, including 589 cows (25 were calves), 2 buffaloes, 11 bullocks, and 25 goats (11 were kids). The mean duration of diarrhea was 4.5 days for adult animals, 4 days for calves, and 3 days for goat kids. Twelve (1.9%) samples were positive for *Cryptosporidium* spp., by PCR. Among these samples, seven *C. muris*, three *C. bovis*, one *C. parvum*, and one *C. hominis* were identified by RFLP. However, sequencing of the SSU ribosomal RNA PCR product showed that banding patterns identified by RFLP as *C. muris* were *C. andersoni* and the banding patterns identified as *C. bovis* were *C. xiaoii*. Further sequencing and analysis of the actin and HSP-70 PCR products confirmed the isolates as *C. xiaoii* (Figure 1).

*Cryptosporidium andersoni* was identified in adult cows, and *C. xiaoii* was identified in one goat and two cows. *Cryptosporidium parvum* was also identified in a goat kid, and *C. hominis* was also identified in a cow. No cryptosporidiam were identified in buffaloes or bullocks.

Most studies from India and other countries have documented *C. parvum* as the predominant species in calves; in
other regions, *C. bovis* has been found to predominate.\(^5\)\(^7\)\(^9\) *Cryptosporidium andersoni* is recognized as a major species in adult cattle.\(^5\)\(^8\)\(^10\) This finding is consistent with that of our study in which we detected *C. andersoni* in 7 adult cows. *C. andersoni* has also been reported in 3 of 2,414 patients with diarrhea,\(^19\) suggesting possible zoonotic transmission to humans.

This study is the first report of *C. xiaoi* in India and is also the first report of this species in a cow. Previous reports have documented *C. xiaoi* in sheep, goats, and lambs.\(^4\)\(^8\) When the *C. parvum* and *C. hominis* animal isolates were subjected to *Cpgp* and *Actin* (1,066 basepairs) with VD07 aligning with *C. xiaoi* (GenBank accession no. FJ896042, 98% identity at the nucleotide level), and the *heat-shock protein 70* locus (325 basepairs) with VD07 aligning with *C. xiaoi* (GenBank accession no. FJ896041, 99% identity at nucleotide level). Scale bars indicate nucleotide substitutions per site.

![Figure 1: Phylogenetic analysis of cryptosporidial isolates at the A, actin locus (1,066 basepairs) with VD07 aligning with *Cryptosporidium xiaoi* (GenBank accession no. FJ896042, 98% identity at the nucleotide level), and the B, heat-shock protein 70 locus (325 basepairs) with VD07 aligning with *C. xiaoi* (GenBank accession no. FJ896041, 99% identity at nucleotide level). Scale bars indicate nucleotide substitutions per site.](image)

Received November 29, 2010. Accepted for publication May 22, 2011.

Financial support: This study was supported by Global Infectious Disease Research Training Grant D43 TW007392.

Authors’ addresses: Priya Rajendran, Sitara Swarna Rao Ajjampur, Divya Chidambaram, Deepthi Kattula, Deva Prasanna Rajan, and Gagandeep Kang, Department of Gastrointestinal Sciences, Christian Medical College, Vellore 632 004, India, E-mails: rpriya@cmcvellore.ac.in, sitararao@cmcvellore.ac.in, divya.chidambaram85@gmail.com, askdeepthi@gmail.com, rajanpr@hotmail.com, and gkang@cmcvellore.ac.in. Honorine Ward, Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, E-mail: hward@tuftsmedicalcenter.org.

REFERENCES


