Short Report: Incidence of Bacteremic Melioidosis in Eastern and Northeastern Thailand

Abstract. Burkholderia pseudomallei, the causative agent of melioidosis, is endemic in northeastern Thailand. Population-based disease burden estimates are lacking and limited data on melioidosis exist from other regions of the country. Using active, population-based surveillance, we measured the incidence of bacteremic melioidosis in the provinces of Sa Kaeo (eastern Thailand) and Nakhon Phanom (northeastern Thailand) during 2006–2008. The average annual incidence in Sa Kaeo and Nakhon Phanom per 100,000 persons was 4.9 (95% confidence interval [CI] = 3.9–6.1) and 14.9 (95% CI = 13.3–16.6). The respective population mortality rates were 1.9 (95% CI = 1.3–2.8) and 4.4 (95% CI = 3.6–5.3) per 100,000. The case-fatality proportion was 36% among those with known outcome. Our findings document a high incidence and case fatality proportion of bacteremic melioidosis in Thailand, including a region not traditionally considered highly endemic, and have potential implications for clinical management and health policy.
(2003–2005) and after (2006–2008) automated culture systems were fully operational. There were no laboratory-confirmed melioidosis cases in SK before 2005, making it impossible to assess CFP.

Data were analyzed using SPSS (SPSS Inc., Chicago, IL). Proportions were compared using Fisher’s exact test. A P value < 0.05 was considered statistically significant. The protocol to review medical records was approved by the institutional review board of the U.S. CDC and the Ethical Review Committee, MOPH, Thailand.

From 43,503 blood cultures collected during 2006–2008, 3,514 (8%) grew pathogens representing 3,232 patients. *Burkholderia pseudomallei* were confirmed in 408 (13%) patients. Among 361 (88%) case-patients who had blood inoculated in both FA/PF and MB culture bottles, 239 (66%) had *B. pseudomallei* isolated from both bottles, 33 (9%) from the FA/PF only, and 89 (25%) from the MB only; *B. pseudomallei* isolation was significantly more likely from MB than from FA/PF [91% versus 75%, $P < 0.01$].

Burkholderia pseudomallei were identified in 5% (78/1,513) and 19% (330/1,719) of bacteremic patients in SK and NP during 2006–2008, ranking sixth and second among all pathogens isolated, respectively. Of 408 case-patients, 128 (31%) died, 231 (57%) were discharged in improved condition, and 49 (12%) had unknown outcomes. Among patients with bacteremic melioidosis and known outcomes, the overall CFP was 36% (128/359), slightly higher in SK (31/71 [44%]) than in NP (97/288 [34%]) ($P = 0.1$). The CFP was similar across age groups and gender.

In NP, bacteremic melioidosis cases increased from an average 43 per year during 2003–2005 to 110 cases per year from 2006 to 2008. The CFPs during 2003, 2004, and 2005 were 60%, 33%, and 37%, respectively. The overall CFP from 2003 to 2005 was significantly higher than the CFP from 2006–2008 (Table 1). Before 2006 in NP, no bacteremic melioidosis cases were confirmed based on cultures collected at hospitals outside of the provincial hospital, while during 2006–2008, 143 (43%) of 330 bacteremic cases were confirmed from cultures collected from patients at district/military hospitals.

During 2006–2008, the average annual incidence of bacteremic melioidosis per 100,000 in SK was 4.9 (95% CI = 3.9–6.1), and in NP was 14.9 (95% CI = 13.3–16.6); respective PMR per 100,000 in SK was 1.9 (95% CI = 1.3–2.8), and in NP was 4.4 (95% CI = 3.6–5.3) (Table 2). Incidence was highest in older age groups in both provinces. In NP, annual peaks occurred during June–October each year, whereas in SK no clear seasonal pattern was documented (Figure 1).

Using active, population-based surveillance for bloodstream infections among hospitalized patients, we documented the incidence of bacteremic melioidosis in eastern and northeastern provinces of Thailand. This is the first published estimate from an area outside the highly endemic northeast. The incidence in the eastern province, SK (4.9 cases per 100,000), was higher than expected, similar to a previous estimate from northeastern Thailand, and much higher than reported from national passive surveillance. The high incidence in NP (14.9 cases per 100,000) indicates that the disease burden is likely higher than previously reported. A recent report from a neighboring province reported a similarly high incidence from 1997 to 2006 of 12.7 cases per 100,000 (21.3 per 100,000 in 2006); a strength of this study was the inclusion of non-bacteremic cases, which were not captured by our system. Only 50–60% of melioidosis cases are typically bacteremic, suggesting that the overall incidence in SK and NP are likely much higher, possibly closer to 10 and 30 cases per 100,000, respectively. The higher incidence documented here is likely due in part to the high detection of cases identified from district/military hospitals, which do not typically have access to advanced microbiology systems.

Burkholderia pseudomallei isolation was significantly improved by routine use of culture bottles optimized for fastidious organisms. Routine use of such media in melioidosis-endemic settings may improve incidence estimates and patient care.

The CFP for bacteremic melioidosis was high, especially in the eastern province where laboratory-confirmed melioidosis had not been documented before automated blood culture...
systems were implemented. The CFP in NP was lower during the time after automated culture systems were in place (2006–2008), even though the CFP estimate for 2003–2005 was based only on in-hospital outcome and certainly underestimated the true CFP. This decline in CFP after 2005 may have resulted partly from a surveillance artifact caused by the detection of less severe cases in the district/military hospitals, or from improvements in clinical management, as it is possible that better detection may have led to earlier diagnosis and improved treatment. Our findings underscore the importance of strengthening local microbiology capacity, especially for severe diseases like melioidosis.

Limitations of this analysis include the inability to determine final outcomes for some patients, which may have biased the results. If all patients with unknown outcomes in 2006–2008 had died, the overall CFP for those years would have been 43% (49% in SK, 42% in NP), which would be more consistent with previous reports. Additionally, information on the timing and selection of antibiotic therapy was not available to assess changes in clinical practice in relation to improved case detection.

Our findings demonstrate the value of active, laboratory-based surveillance to document melioidosis burden in Thailand, especially outside known endemic areas. Recognizing that our surveillance system only captured bacteremic cases, it is fair to conclude that melioidosis burden is substantially higher than previously reported. Additional work is required to better understand trends in CFP over time and to assess whether improved diagnostic capacity through automated systems had an impact on case management and outcomes.

Received February 2, 2011. Accepted for publication April 2, 2011.

Acknowledgments: We are grateful for the contributions of the many study collaborators, the Sa Kaeo and Nakhon Phanom provincial health offices, surveillance officers, and the district and provincial hospitals in Sa Kaeo and Nakhon Phanom.

Disclosure: These data were presented as an oral presentation at the 57th American Society of Tropical Medicine and Hygiene Annual Meeting, New Orleans, LA. Scientific Session No. 75, Bacteriology III, Presentation No. 418.

Disclaimer: Findings presented in this paper represent the views of the authors and do not necessarily represent those of the U.S. Centers for Disease Control and Prevention.

Authors’ addresses: Saihiph Bhengsri, Henry C. Baggett, Posawat Jorakate, Anec Kaeawpan, Prabda Prapasiri, Sathapana Naorat, Somsak Thamthiwit, Prasert Salika, Leonard F. Peruski, and Susan A. Maloney, International Emerging Infections Program, Thailand MOPH-US CDC Collaboration, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand, E-mails: SaihipB@th.cdc.gov, KipB@th.cdc.gov, PosawatJ@th.cdc.gov, AnecK@th.cdc.gov, PrabdaP@th.cdc.gov, SathapanaN@th.cdc.gov, SomsakT@th.cdc.gov, PrasertS@th.cdc.gov, LeonardP@th.cdc.gov, and SusanM@th.cdc.gov. Kittisak Tanwisaid, Nakhon Phanom Hospital, Nakhon Phanom, Thailand, E-mail: Kittisak97@gmail.com. Somrak Chantra, Sa Kaeo Crown Prince Hospital, Sa Kaeo, Thailand, E-mail: SomrakC@hotmail.com. Surang Dejsirilert, National Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi, Thailand, E-mail: Surang_dej@yahoo.com.

REFERENCES

