Antimalarial Drug Sensitivity Profile of Western Kenya Plasmodium falciparum Field Isolates Determined by a SYBR Green I in vitro Assay and Molecular Analysis

Hoseah M. Akala, Fredrick L. Eyase, Agnes C. Cheruiyot, Angela A. Omondi, Bernhards R. Ogutu, Norman C. Waters, Jacob D. Johnson, Mark E. Polhemus, David C. Schnabel, and Douglas S. Walsh*

Global Emerging Infections Surveillance (GEIS) Program, United States Army Medical Research Unit-Kenya (USAMRU-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, Kisumu and Nairobi, Kenya; United States Military Academy, West Point, New York; Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland

Abstract. In vitro drug sensitivity and molecular analyses of Plasmodium falciparum track drug resistance. DNA-binding fluorescent dyes like SYBR Green I may allow field laboratories, proximal to P. falciparum collection sites, to conduct drug assays. In 2007–2008, we assayed 121 P. falciparum field isolates from western Kenya for 50% inhibitory concentrations (IC50) against 6 antimalarial drugs using a SYBR Green I in vitro assay; 91 immediate ex vivo (IEV) and 30 culture-adapted, along with P. falciparum reference clones D6 (chloroquine [CQ] sensitive) and W2 (CQ resistant). We also assessed P. falciparum mdr1 (Pfmdr1) copy number and single nucleotide polymorphisms (SNPs) at four codons. The IC50 for IEV and culture-adapted P. falciparum isolates were similar, and approximated historical IC50. For Pfmdr1, mean copy number was 1, with SNPs common at codons 86 and 184. The SYBR Green I assay adapted well to our field-based laboratory, for both IEV and culture-adapted P. falciparum, warranting continued use.

INTRODUCTION

Since the 1980s, measuring in vitro drug 50% inhibitory concentrations (IC50) against Plasmodium falciparum field isolates, coupled with molecular analysis, has been useful for tracking development of in vivo drug resistance, from Southeast Asia to sub-Saharan Africa.1-3 However, one commonly used assay, 3H-hypoxanthine uptake, is cumbersome, expensive, and often limits assay conduct to urban, well-resourced laboratories.4,5 Moreover, blood samples containing P. falciparum parasites for testing may be stored at collection sites for days, transported long distances to the laboratory, and then culture adapted for assay, all potential sources of clonal selection.

Recently, non-radioisotope microtests using fluorescent DNA dyes such as SYBR Green I, which reliably depict parasite replication, have gained popularity by reducing some hurdles associated with in vitro P. falciparum drug sensitivity assays.6-9 The SYBR Green I assays are considered convenient, relatively rapid, reproducible, and less costly than radioisotope assays.5,10 These features suggest SYBR Green I drug sensitivity assays could be deployed to field laboratories, proximal to P. falciparum collection sites. The SYBR Green I is increasingly accepted as an alternate to 3H-hypoxanthine uptake assays.11

In Kenya, malaria continues to cause significant morbidity and mortality, and is often a location where drug resistance emerges in Africa. For example, the development of P. falciparum resistance to chloroquine diphosphate (CQ), and later sulfadoxine-pyrimethamine, are well described.12-14 This warrants continued in vitro drug IC50 monitoring of P. falciparum field isolates, which is becoming more practical and safer, as more reliable assays like SYBR Green I become established, combined with simpler field isolate processing such as “immediate ex vivo” (IEV).

SUBJECTS AND METHODS

Protocol, sites, and subjects. This study was approved by the Kenya Medical Research Institute (KEMRI) and Walter Reed Army Institute of Research (WRAIR) institutional review boards (protocol numbers: KEMRI 1330, WRAIR 1384). Participating clinical centers, all Kenya Ministry of Health facilities located in West Kenya (Figure 1), including Kisumu, Kisii, and Kericho District Hospitals, and Chulaimbo Sub-District Hospital. Kisumu and Chulaimbo are lowland, malaria holoendemic areas, whereas Kisii and Kericho are highland, malaria hypoendemic areas.16 At each participating facility, training of medical staff, capacity building, and facility upgrades were provided by the Global Emerging Infections Surveillance (GEIS) Program, U.S. Department of Defense.

Subjects attending outpatient clinics in 2007 and 2008, at least 6 months old and suspected of having non-complicated P. falciparum malaria were invited to participate. Written informed consent was obtained from adult subjects (≥ 18 years of age) or legal guardians for subjects < 18 years of age. Persons treated for malaria within the last 2 weeks were excluded.

Sample collection and preparation. Consented subjects with a positive P. falciparum rapid diagnostic test (RDT; Parascreen [Pan/PI], Zephyr Biomedicals, Verna Goa, India) provided 2–3 mL of blood for transport to the laboratory. Parascreen detects P. falciparum-specific histidine protein-2 (PI HRP-2) and pan-specific parasite lactate dehydrogenase (pLDH) in whole blood, the latter is useful for follow-up of antimalarial therapy. Three blood spots of about 100 μL each were placed on FTA filter paper (Whatman Inc., Bound Brook, NJ) for P. falciparum DNA extraction and molecular analysis, and two blood films on glass slides were made for Giemsa staining at the laboratory for microscopic examination, to confirm RDT results and determine parasitemia. For discrepancies between RDT and microscopy, microscopy determined the final result. Plasmodium falciparum isolates from Kisumu District Hospital and Chulaimbo Health Center, 15-minute drive from the laboratory, were collected in acid citrate dextrose (ACD) vacutainer tubes (Becton-Dickinson, Inc., Franklin Lakes, NJ) and transported within 4 hours to begin IEV drug IC50 testing (described below). Plasmodium falciparum isolates from Kericho and Kisii District Hospitals, 2-hour drive from the laboratory, were placed in storage-transport media, and refrigerated at 4°C until transported to the laboratory, generally within 72 hours, for culture adaptation and drug testing.17

* Address correspondence to Douglas Walsh, AFRIMS, 315/6 Rajvithi Road, Bangkok, 10400, Thailand. E-mail: douglas.walsh@afirms.org
Subjects were treated with oral artemether-lumefantrine (AL; Coartem) administered over three consecutive days, a standard of care for *P. falciparum* malaria in Kenya. The first dose was observed by the study team and remaining doses were self-administered at home. Subjects living near study centers were asked to return on Day 7, for repeat malaria testing.

In vitro drug sensitivity testing. A SYBR Green I-based *in vitro* IC₅₀ drug sensitivity assay, described earlier, was used to test each *P. falciparum* field isolate against a panel of six conventional antimalarials supplied as chloroquine diphosphate (CQ), mefloquine hydrochloride (MQ), quinine sulfate hydrate (QN), artemisinin (AR), amodiaquine hydrochloride (AQ), and doxycycline hyclate (DX). Because all test drugs, except AR (pure base), were provided as a salt and prepared by weight:volume convention, we used salt formulas for AR, AQ, and DX. For CQ, 1.5 mL deionized water was combined with 3.5 mL of absolute ethanol. Further dilutions were generated for AR, AQ, and DX. For CQ, 1.5 mL deionized water was combined with 3.5 mL of absolute ethanol. Further dilutions were generated for AR, AQ, and DX.

To prepare test drugs, stock drug solutions at 1 mg/mL were prepared in 5 mL 70% ethanol for MQ and QN or 100% dimethyl sulfoxide for AR, AQ, and DX. For CQ, 1.5 mL deionized water was combined with 3.5 mL of absolute ethanol. Further dilutions were made in complete RPMI 1640 media to the desired starting concentration, followed by serial 2-fold dilutions to generate 10 concentrations for IC₅₀ testing. The concentration ranges (ng/mL), from highest to lowest, were CQ (1,000 to 1.953), MQ (250 to 0.488), QN (2,000 to 3.906), AR (100 to 0.195), AQ (100 to 0.195), and DX (50,000 to 97.656). The drug solutions were prepared and used immediately, or stored at −80°C for not longer than 1 month before use. Basic and complete RPMI 1640 culture media, the latter with glucose and hypoxanthine enrichment, were prepared as described.

Plasmodium falciparum field isolates refrigerated in transport media, and the two *P. falciparum* laboratory reference clones D6 and W2, were culture adapted before IC₅₀ SYBR Green I assay. The parasites were cultured at 6% hematocrit for 7–30 days, to reach 3–8% parasitemia. For IC₅₀ drug assays, culture-adapted parasites were adjusted to 2% hematocrit and 1% parasitemia, and antimalarial drug aliquots in complete RPMI 1640 and added to the wells as described below.

Plasmodium falciparum isolates processed IEV were placed into assay within 6 hours of phlebotomy, without culture adaptation. Blood samples with > 1% parasitemia were adjusted to 1% parasitemia at 2% hematocrit, and those with ≤ 1% parasitemia were used unadjusted at 2% hematocrit.

For culture-adapted and IEV assays, transfer of parasite sample and antimalarial drug aliquots in complete RPMI 1640 drug aliquots onto 96-well microculture plates and addition of lysis buffer after 72 hours incubation was done as previously described. The plates were then placed at room temperature in the dark, for 5–15 minutes. Parasite replication inhibition was quantified and the IC₅₀ for each drug calculated by an equation generating a sigmoidal concentration-response curve (variable slope), with log transformed drug concentrations on the X axis and relative fluorescent units (RFUs) on the Y axis (Graphpad Prism for Windows, version 4.0; Graphpad Software, Inc., San Diego, CA).

Assessing possible sources of SYBR Green I background signal. In experiment set 1, to measure the intrinsic effect of each drug alone on SYBR Green I RFU, in comparison with complete assay wells, we plated each drug over the standard 10 dilutions in complete RPMI 1640 media alone ("drug only" wells), or in complete RPMI 1640 media containing 1% *P. falciparum* parasitemia and 32,000 peripheral blood mononuclear cells (PBMC)/well ("complete assay" wells), respectively. The PBMC were isolated by density gradient from the blood of a healthy donor. Drug only and 1 set of complete assay wells were processed without incubation, and a second set of complete assay wells were incubated for 72 hours at 37°C in a gas mixture, described earlier. All plates were then prepared for SYBR Green I assay measurements by Genios Tecan. For complete assay wells, 32,000 PBMC/well approximated the number of white blood cells (WBC) in a typical IEV well, based on an estimate of 8,000 WBC/μL of whole blood in a subject. We also assessed a range of *P. falciparum* parasitemias, from 1% to 0.112% (2-fold dilutions), to determine the capability of SYBR Green I to discern IC₅₀ in IEV samples with low parasitemias.

In experiment set 2, to assess the influence of PBMC concentration on SYBR Green I assay RFU, we plated a range of PBMC (61 to 250,000 cells/well) in complete RPMI 1640 media with 1% *P. falciparum* parasitemia, without incubation, and then measured RFUs within 15 minutes by Genios Tecan. All experiments were conducted in triplicate.

Pfmdr1 copy number. *Plasmodium falciparum* DNA for all molecular assays was extracted from FTA filter paper blots or DNA-RNA purified from blood as described.
whole blood using QIAamp DNA Blood Mini Kit (Qiagen, Inc., Alameda, CA), according to manufacturer instructions.

The $2^{-\Delta\Delta Ct}$ method of relative quantification was used to estimate \textit{P. falciparum} multiple drug resistance gene 1 (\textit{Pfmdr1}) copy numbers.20 For this method, there should be at least 1 calibrator with a known number of copies of the gene under study, and a housekeeping gene with constant copy number to normalize the quantitative data.21 For the calibrator, we used genomic DNA from \textit{P. falciparum} reference clone 3D7, known to have 1 copy of \textit{Pfmdr1} gene.22 \textit{Plasmodium falciparum} tubulin served as a housekeeping gene, and \textit{Dd2} \textit{P. falciparum} clone DNA served as a \textit{Pfmdr1} multiple copy control.

The relative quantification of the \textit{Pfmdr1} gene was determined as previously described.23 Briefly, $\Delta Ct = (Ct_{\text{Pfmdr1}} - Ct_{\text{P. falciparum-tubulin}}) - (Ct_{\text{Pfmdr1}} - Ct_{\text{P. falciparum-tubulin}})$, where x is the field isolate and y is 3D7. The results were then calculated as n-fold changes in \textit{P. falciparum} isolate \textit{Pfmdr1} gene copies, normalized to \textit{P. falciparum} tubulin, relative to the copy number of \textit{Pfmdr1} in \textit{P. falciparum} 3D7 using the equation $2^{-\Delta\Delta Ct}$, as described.20,21 Each sample was run in triplicate and the Ct value of each well recorded at the end of the reaction. The average of the Ct values for each sample was used for the determination of \textit{Pfmdr1} copy number.

\textit{Pfmdr1} codon single nucleotide polymorphism (SNP) analysis. SNP analysis was conducted for \textit{Pfmdr1} codons 86 (N86Y), 184 (Y184F), 1034 (S1034C), and 1042 (N1042D) using real-time polymerase chain reaction (PCR).22,23 Probes consisted of VIC for wild-type and 6-FAM (6-carboxyfluorescein) for the mutation.24 \textit{Plasmodium falciparum} reference clones 3D7 (MQ-S) and \textit{Dd2} (MQ-R), as well as \textit{D6} and \textit{W2}, were also assayed.

RESULTS

Subject enrollment and follow up. Three hundred fifty-two \textit{P. falciparum} RDT (+) subjects provided blood samples. For Day 7 post-treatment appointments, 216 subjects tested by Parascreen remained PHRP-2 (+), but were pLDH (−), the latter indicating absence of \textit{P. falciparum} asexual stages; five had gametocytes.

SYBR Green I IC$_{50}$ drug assays. We assayed 121 \textit{P. falciparum} field isolates, 91 IEV, and 30 culture-adapted, against a panel of six drugs. A “successful” assay, defined as a concentration-response across the 10 drug concentrations for 1 or more drugs per each \textit{P. falciparum} field isolate, occurred in 68% of all isolates. For IEV, the success rate for all assays was 70% (78% with parasitemias > 0.5%) and 61% for parasitemias ≤ 0.5%. For culture adaptation, 63% of the assays were successful.

Figure 2A–F shows individual and median IC$_{50}$ values for complete assay wells with earlier work.6 Finally, SYBR Green I assay discerned IC$_{50}$ for complete assay wells with \textit{P. falciparum} parasitemias ranging from 1% to 0.112%, against all six test drugs (data not shown). These observations, and Figure 3B, are relevant to IEV processing.

In Figure 3B, drug concentrations used in the IC$_{50}$ assays generated sigmoidal curves, indicating 50% parasite replication inhibition at about 4,000 RFU. Data from Figure 3A and other experiments (not shown) indicated background RFU signaling (drug + medium + 32 K PBMC) subtracted from the RFU value of each IC$_{50}$ replicate was unnecessary, consistent with earlier work.6 Finally, SYBR Green I assay discerned IC$_{50}$ for complete assay wells with \textit{P. falciparum} parasitemias ranging from 1% to 0.112%, against all six test drugs (data not shown). These observations, and Figure 3B, are relevant to IEV processing.

DISCUSSION

This is the first report from Kenya describing a SYBR Green I assay for measuring in vitro drug IC$_{50}$ against \textit{P. falciparum} field isolates. Notably, SYBR Green I assay was conducted at
our field-based laboratory, proximal to *P. falciparum* collection sites, using six drugs. Several earlier reports describe SYBR Green I assays in developed countries, assessing *P. falciparum* clones against a few drugs. Second, we assayed *P. falciparum* field isolates IEV and by culture adaptation, obtaining IC_{50} values in 70% and 63% of assays, respectively. These success rates, higher than historical radioisotope uptake assays in our laboratory, may reflect simpler processing. The overall experience of SYBR Green I supports continued use.

Figure 2. (A–F) SYBR Green I drug IC_{50}s for *Plasmodium falciparum* field isolates, shown as scatter plot and median (red bar). IC_{50} ranges of *P. falciparum* reference clones D6 and W2 for chloroquine diphosphate (CQ), mefloquine hydrochloride (MQ), and quinine sulfate hydrate (QN) shown in two hatched boxes; for artemisinin (AR), amodiaquine hydrochloride (AQ), and doxycycline hyclate (DX), in single hatched box. Purple bars: median IC_{50} in *P. falciparum* field isolates obtained 1997–2002 (culture-adapted, radioisotope uptake assay). Black lines on CQ, MQ, and QN graphs: IC_{50} threshold values considered discriminative for “resistant” *P. falciparum* isolates (culture-adapted, radioisotope uptake assay).
For example, about 30% of CQ IC₅₀'s and 50% of MQ IC₅₀'s in SYBR Green I assays exceeded previously established in vitro discriminative "resistance" values of 45 ng/mL and 10 ng/mL, respectively. The IC₅₀ ranges for two P. falciparum reference clones, D6 and W2, paralleled their expected CQ and MQ sensitivity profiles. These observations underscored adaptability of the SYBR Green I IC₅₀ assay to a field-based laboratory.

Figure 3. Experiments assessing SYBR Green I relative fluorescent unit (RFU) background signal of each drug, and peripheral blood mononuclear cells (PBMCs). (A) SYBR Green I individual and median RFUs among three groups: Group 1: each drug in RPMI 1640 media only. Group 2: Each drug in RPMI 1640 media + 32K PBMC + 1% parasitemia/well; no incubation. Group 3: Same as Group 2, after 72 hours incubation (37°C). Symbols represent RFU value for each drug, across 10 concentrations used in the SYBR Green I assay. Medians for Groups 2 and 3, shown as black and blue bars, respectively; differences in medians and minimal overlap implies determinable IC₅₀'s after 72 hours incubation. Dotted red line at 4,000 RFU approximates 50% inhibition of parasite replication, obtained from Figure 3B. (B) SYBR Green I RFUs in complete assay wells, over 10 drug concentrations, with 32,000 PBMC and 1% parasitemia/well, incubated 72 hours (37°C). Dotted red line approximates 50% inhibition of parasite replication. (C) Panels 1 and 2 show SYBR Green I RFUs for PBMC concentrations ranging from 61 to 250 K cells/well, plated in complete RPMI 1640 media. Each colored symbol is 1 PBMC spiked replicate, diluted over the range shown. Panel 2: "Area of interest" denotes range for number of white blood cells in a typical immediate ex vivo blood sample, relevant to IEV SYBR Green I IC₅₀ assays. Linear relationships occur over entire range.

culture-adapted P. falciparum isolates. For example, about 30% of CQ IC₅₀'s and 50% of MQ IC₅₀'s in SYBR Green I assays exceeded previously established in vitro discriminative "resistance" values of 45 ng/mL and 10 ng/mL, respectively. The IC₅₀ ranges for two P. falciparum reference clones, D6 and W2, paralleled their expected CQ and MQ sensitivity profiles. These observations underscored adaptability of the SYBR Green I IC₅₀ assay to a field-based laboratory.

We processed P. falciparum field isolates IEV or culture adapted, depending on proximity to the laboratory. For P. falciparum isolates stored for several days at 4°C, we waited until parasitemias reached 3-8% before drug IC₅₀ testing. Here, IEV was feasible because of laboratory proximity to two collection sites, with P. falciparum isolates placed into assay soon after collection. Encouragingly, against each of four drugs (CQ, QN, AQ, DX), median IC₅₀'s of IEV and culture-adapted isolates were similar, differing only for MQ and AR, at 1.5- and 1.8-fold, respectively, albeit relatively low magnitudes for IC₅₀ testing. The IEV was simpler than culture adaptation, as others observed.

To partly address background concerns for SYBR Green I assay, we confirmed each drug alone did not affect RFU values. Second, complete RPMI 1640 media with 1% P. falciparum and 32,000 PBMC/well, approximating WBC in an IEV assay well, appeared unlikely to elevate RFUs to a level obscuring IC₅₀ interpretations. Finally, relevant to IEV, we found that SYBR Green I assay discerns drug IC₅₀'s with P. falciparum parasitemias as low as 0.112%, an issue in debate.
Among IEV assays, the upper half of IC\textsubscript{50} ranges was notably higher for five drugs, in comparison with culture adapted. This might reflect greater biological variability in IEV \textit{P. falciparum} isolates, including better preserved sub-populations of drug-resistant and sensitive parasites.11, 25, 26 It may be useful to determine multiplicity of infection of each \textit{P. falciparum} isolate, processed IEV, and culture adapted, along with comparative IEV and culture-adapted SYBR Green I assays.

AR was the lone drug without larger IEV IC\textsubscript{50} ranges, in comparison with culture-adapted isolates, perhaps because there are few, if any, AR-resistant clones in Kenya. Alternatively, this may reflect the activity of AR against most \textit{P. falciparum} blood stages.27 Median IC\textsubscript{50} values for AR, among IEV and culture-adapted assays, were 2- to 3-fold higher in comparison with earlier radioisotope assays, and a recent report of SYBR Green I assessing freeze-thawed, culture-adapted \textit{P. falciparum} samples.7, 17 Higher AR IC\textsubscript{50}s are unlikely to represent resistance, but perhaps methodological variability.

The SYBR Green I IC\textsubscript{50} values for six drugs, establishing a modest baseline for western Kenya, support continued work to better define IC\textsubscript{50}s. For radioisotope assays using culture-adapted \textit{P. falciparum} isolates, IC\textsubscript{50} values discriminative for \textit{in vivo} “resistance” exist (CQ, MQ, QN, and five others).17 If SYBR Green I is widely implemented for \textit{in vitro} \textit{P. falciparum} drug testing, reference IC\textsubscript{50} values discriminative for resistance, ideally linked with \textit{in vivo} responses, could enhance usefulness.

In Kenya, with artemether + lumefantrine (Coartem) implemented as the artemisinin combination therapy (ACT) standard in 2003, and with no clinical evidence of resistance, there is an opportunity with SYBR Green I assay to track A+ L IC\textsubscript{50} values. Indeed, in East Africa, Kenya is often a sentinel site for drug resistance.15, 28 As such, we have developed SYBR Green I assays for artemether, lumefantrine, artemisinin combinations, as well as atovaquone, halofantrine, primaquine, and tafenoquine.11

\textit{Pfmdr1} is a constitutive gene in \textit{P. falciparum} that confers multiple drug resistance when more than 1 copy is present.2 Parasites with multiple \textit{Pfmdr1} copies are most common in Southeast Asia, where multiple drug-resistant \textit{P. falciparum
malaria, including MQ, exists. As expected, our P. falciparum field isolates from western Kenya contained an average of 1 copy number of Pfmdr1, consistent with a wild-type genotype not necessarily associated with multidrug resistance. MQ has not been widely used in Kenya, precluding comment on in vitro MQ IC₅₀ s and in vivo responsiveness.

SNPs in certain Pfmdr1 codons may confer drug resistance. Among P. falciparum isolates we collected earlier (1997–2002), Pfmdr1 codon 86 mutation (86Y) rates in two western sites (Kisumu, Kericho) were 35% and 68%, respectively (mean, 51%), whereas two eastern sites (Entosopia, Magadi) had rates > 85%. This reflected CQ resistance in Kenya. Here, in P. falciparum isolates from western Kenya, mutation rates in codon 86 were 66%, far less at 184 and 1,034. The mutation rates in codons 86, 184, and 1034 were similar for lowland and highland sites, suggesting Pfmdr1 SNPs are not necessarily associated with severe malaria presentation, often anaemia and cerebral malaria, respectively.

We interpret the similarity in Pfmdr1 codon 86 mutation (86Y) rates for 1997–2002 (51%) and this study (66%), along with similar CQ IC₅₀ s, as sustained CQ resistance in Kenya. Indeed, most P. falciparum isolates contained codon 86 mutation (86Y), modestly associated with higher CQ IC₅₀ s. Mutation in pfcr, well established in Kenya, also confers CQ resistance. In contrast, Pfmdr1 codon 86 mutations (86Y) were associated with lower median IC₅₀ s for MQ, and AR. This parallels earlier reports describing Pfmdr1 codon 86Y and drug IC₅₀ relationships, typically direct with CQ, and inverse with MQ. For AR, a lower median IC₅₀ in P. falciparum field isolates expressing Pfmdr1 codon 86 mutation (86Y) supports the notion this mutation is unlikely associated with emerging AR resistance.

Received November 29, 2010. Accepted for publication February 11, 2011.

Acknowledgments: We thank Duke Omariba, Stella Apollo, and all GEIS clinical staff serving at Kisumu, Kisii, and Kericho District Hospitals for their assistance. We also thank Harald Noedl for helpful advice.

Financial support: This work was supported by the U.S. Department of Defense Global Emerging Infections System, Silver Spring, Maryland.

Disclosure: Presented in part, 2008 Annual Meeting of the American Society of Tropical Medicine and Hygiene, New Orleans, LA.

Disclaimer: The opinions and assertions contained in this work are the private views of the authors and are not to be construed as official or as reflecting the views of the U.S. Department of the Army or the Department of Defense.

Authors’ addresses: Hosea M. Akala, Fredrick L. Eyase, Agnes C. Cheruiyot, Angela A. Omondi, Bernhard R. Ogotu, and Jacob D. Johnson, U.S. Army Medical Research Unit-Kenya (USAMRU-K), KEMRI-Walter Reed Project, Kisumu, Kenya, E-mails: hakala@wpr-ksm.org, feyase@wpr-ksm.org, aomondi@wpr-ksm.org, boguta@wpr-ksm.org, and johson@wpr-ksm.org. Norman C. Waters, U.S. Military Academy, West Point, NY, E-mail: norman .waters@us.army.mil. Mark E. Polhemus, USA ASAALT, Pentagon, Washington, DC, E-mail: mark.polhemus@conus.army.mil. David C. Schnabel, U.S. Army Medical Research Unit-Kenya (USAMRU-K), KEMRI-Walter Reed Project, Kisumu and Nairobi, Kenya, E-mail: dschnabel@wpr-ksm.org. Douglas S. Walsh, AFRIMS, Bangkok, Thailand, E-mail: douglas.walsh@afirms.org.

REFERENCES

