Demographic and Clinical Factors Associated with Persistent Symptoms after West Nile Virus Infection

Robert L. Cook,* Xiaohui Xu, Eric J. Yablonsky, Nikole Sakata, Jennifer H. Tripp, Rachel Hess, Paolo Piazza, and Charles R. Rinaldo

INTRODUCTION

West Nile virus (WNV) was introduced into North America in 1999 and has now become endemic in the United States with outbreaks each summer and fall.1 The virus initially spread throughout the eastern parts of the United States and gradually moved westward. In 2008, human WNV cases were reported in 45 states.2 Most human WNV infections are asymptomatic.3 Among persons with clinical illness, the features of acute illness range from uncomplicated West Nile fever to neuroinvasive conditions such as meningitis, encephalitis, and acute flaccid paralysis.

After acute illness, many persons recover to their previous state of health. However, 20–50% of persons with clinically diagnosed WNV infection report persistent sequelae including somatic symptoms, cognitive and memory problems, depression, and balance and mobility difficulties.4–14 Conclusions regarding the duration of such symptoms have been somewhat inconsistent, with several studies reporting persistent symptoms at 6 and 12 months after acute infection,4–8,10,12,13 whereas a recent study concluded that nearly all persons with WNV will recover full function within one year after infection.13

The reasons for variation in clinical outcomes remain relatively unknown. Previous studies suggest that older age, neuroinvasive disease, medical comorbidities, and more recent infection are associated with more clinically severe outcomes.4–14 In many of these studies, the clinical outcome was limited to one or two specific signs and symptoms (e.g., neurologic dysfunction, memory test, presence of specific symptom). Our study objectives were to determine the prevalence of long-term symptoms among persons diagnosed with WNV during 2006–2008 and to determine the association of age, sex, neuroinvasive disease status, hypertension or diabetes, and time since acute infection on the most common individual symptoms.

MATERIALS AND METHODS

Participants were recruited from persons with WNV who were reported to two of the seven district health departments in Idaho during 2006–2008. All persons were classified as having either confirmed (95%) or probable (5%) WNV infections according to standard case definitions that include a positive IgM test result for WNV and a compatible clinical syndrome.2 In 2006, Idaho had the greatest number of WNV infections in the United States, and the state continued to be among the top 10 in terms of total reported cases in 2007–2008.15 As part of a larger study designed to study the immunology of WNV infection,16 health department staff mailed questionnaires to 407 persons with a newly reported diagnosis of WNV infection; 280 persons returned them (response = 69%). We excluded 3 persons whose surveys included more than 50% missing data, and 12 persons who were asymptomatic at baseline diagnosis. Compared with all persons with WNV who were reported to the two district health departments during this period, the survey respondents were slightly more likely to be female (60% versus 51%), but similar in terms of the proportion with neuroinvasive disease (21% versus 21%). All study procedures were approved by institutional review boards at participating universities and the two local health departments.

The questionnaires included items that assessed demographic characteristics, presence of diabetes or hypertension, initial severity of illness (e.g., hospitalization), and impact on work. Time since acute infection was calculated as the number of days from the date of disease onset (self-report) to the date that the questionnaire was completed and rounded to the nearest month. Collaborators at the district health departments provided information on neuroinvasive disease status based on epidemiologic investigation and defined according to standardized case definitions.2

Symptom Measures. The questionnaire assessed 17 prominent symptoms that have been associated with WNV infection.6,17–20 Specifically, persons were asked to report if they “had any of the following symptoms with your West Nile virus infection?” For each symptom reported, persons were asked to “indicate how severe the symptom was (options low/mild, medium, or severe), and “how long did the symptom last”, (options = 1–2 days,
3–7 days, 1–2 weeks, and > 2 weeks, and still have it). Using these distinctions, we categorized each symptom as being persistent if participants rated it as “still have it” and the severity was rated as moderate or severe. Participants reporting only mild persistent symptoms were categorized as no longer exhibiting the symptom.

Statistical Analyses. We conducted descriptive analyses to describe the study sample and to present the proportion of persons with symptoms among those who completed the survey ≥ 6 months and ≥ 9 months after the initial infection. Bivariate analyses were used to determine whether individual signs or symptoms varied by sex or baseline neuroinvasive status. Multivariate logistic regression analyses were then conducted to determine the association between the clinical and demographic variables of interest and six of the most commonly reported symptoms. Variables in the models included age (continuous per year), neuroinvasive disease at illness onset (yes versus no), sex, presence of hypertension or diabetes (yes or no), and time since acute infection (in months). All analyses were conducted by using SAS version 9.1 (SAS Institute Inc., Cary, NC).

RESULTS

The mean age of the cohort was 52 years (range, 18–88 years), 159 (60%) were female, and 242 (92%) were white (Table 1). Most participants were infected in 2006 (n = 211), followed by 2007 (n = 36) and 2008 (n = 5), which is proportional to the overall numbers of WNV case numbers in Idaho during these years. Most persons completed the questionnaire 6–9 months after acute infection (mean ± SD = 7.7 ± 2.7 months). Thirty percent had hypertension (27%) and/or diabetes (11%). At the time of acute illness, 53 persons (20%) had neuroinvasive disease, and 208 (80%) had West Nile fever. Of those 53 persons with neuroinvasive disease, 83% were hospitalized at least one night and 32% required post-hospitalization care in a nursing home. Additional details regarding the acute health conditions, use of health resources, and impact of WNV infection on work are shown in Table 1.

Symptoms. More than half (53%) of persons reported one or more persistent symptoms that were rated as moderate or severe in severity. The most commonly reported persistent symptoms were fatigue (34%), decreased activity (27%), difficulty with memory (25%), difficulty concentrating (23%), muscle aches (19%), weakness (19%), balance problems (18%), and vision change (17%). The percentage of persons reporting persistent symptoms was similar in persons completing the survey at least 6 months after diagnosis (n = 214) and those persons with at least 9 months of follow-up (n = 86) is shown in Table 2. As expected, persons with neuroinvasive disease at onset had a significantly higher prevalence for most signs and symptoms (Table 2).

Multivariate Analyses. Results from multivariable analyses conducted to identify clinical and demographic variables that were independently associated with having one of the six most common symptoms are shown in Table 3. Neuroinvasive disease was significantly associated with an increased likelihood of persistent fatigue, muscle aches, decreased activity, and balance problems, but had relatively little independent impact on memory or concentration problems. Persons having hypertension or diabetes were also significantly more likely to have persistent symptoms. In contrast, age, sex, and time since infection were each statistically significantly associated with only one or two of the chronic symptoms after adjusting for neuroinvasive disease and hypertension/diabetes (Table 3).

DISCUSSION

This report presents findings from a cohort of more than 200 persons with a diagnosis of WNV infection during 2006–2008. The findings suggest that at least half of persons with clinically diagnosed WNV infection will continue to have persistent symptoms 6–9 months after diagnosis. The most common persistent symptoms associated with WNV included physical symptoms (fatigue, muscle aches, weakness, headache), cognitive
Persistent symptoms among 265 persons with West Nile Virus infection according to time since initial infection and baseline neuroinvasive disease status, Idaho, 2006–2008

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Overall (n = 265) (%)</th>
<th>≥ 6 Months after infection (n = 2141) (%)</th>
<th>≥ 9 Months after infection (n = 860) (%)</th>
<th>Neuroinvasive disease (n = 53)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue (felt tired)</td>
<td>34</td>
<td>34</td>
<td>42</td>
<td>48</td>
<td>0.02</td>
</tr>
<tr>
<td>Decreased activity</td>
<td>27</td>
<td>25</td>
<td>33</td>
<td>51</td>
<td><0.01</td>
</tr>
<tr>
<td>Difficulty with memory</td>
<td>25</td>
<td>26</td>
<td>34</td>
<td>35</td>
<td>0.07</td>
</tr>
<tr>
<td>Difficulty concentrating</td>
<td>23</td>
<td>23</td>
<td>34</td>
<td>29</td>
<td>0.25</td>
</tr>
<tr>
<td>Muscle aches (sore all over)</td>
<td>19</td>
<td>17</td>
<td>22</td>
<td>31</td>
<td>0.01</td>
</tr>
<tr>
<td>Weakness (felt weak all over)</td>
<td>19</td>
<td>17</td>
<td>21</td>
<td>36</td>
<td><0.01</td>
</tr>
<tr>
<td>Vision change</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>31</td>
<td><0.01</td>
</tr>
<tr>
<td>Balance problems</td>
<td>18</td>
<td>16</td>
<td>21</td>
<td>39</td>
<td><0.01</td>
</tr>
<tr>
<td>Headache</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>21</td>
<td>0.28</td>
</tr>
<tr>
<td>Irritability</td>
<td>13</td>
<td>12</td>
<td>17</td>
<td>12</td>
<td>0.68</td>
</tr>
<tr>
<td>Pain or “pins and needles”</td>
<td>13</td>
<td>11</td>
<td>17</td>
<td>24</td>
<td><0.01</td>
</tr>
<tr>
<td>Diarrhea or intestinal problem</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>0.13</td>
</tr>
<tr>
<td>Tremor (shaking)</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>17</td>
<td><0.01</td>
</tr>
<tr>
<td>Bladder or urine problem</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>0.03</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>0.14</td>
</tr>
<tr>
<td>Fever or chills</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0.43</td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.63</td>
</tr>
<tr>
<td>Any persistent symptom</td>
<td>55</td>
<td>53</td>
<td>63</td>
<td>71.7</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Statistical comparisons by neuroinvasive disease status.

A greater understanding of the reasons for such diversity in
persistent health problems associated with West Nile virus will help to better define the overall burden of disease and help to guide prognosis discussions, treatment options, vaccine development, and other prevention strategies.

Received December 1, 2009. Accepted for publication July 7, 2010.

Acknowledgments: We thank the staff at the Central District Health Department and the Southwest District Health Department, Idaho, for contributions and assistance, Ayan Chakrabarti (University of Pittsburgh) for technical assistance, and James J. Sejvar (Centers for Disease Control and Prevention) for assistance.

Financial support: This study was supported in part by National Institutes of Health contract HHSN226200400027C (W. Hildebrand, University of Oklahoma).

Authors' addresses: Robert L. Cook and Xiaohui Xu, University of Florida, Gainesville, FL, E-mails: cookr1@ufl.edu and xhxu@phhp.ufl.edu. Eric J. Yablonsky, University of Pittsburgh, Pittsburgh, PA, E-mail: yablonskye@upmc.edu. Nikole Sakata, Central District Health Department, Boise, ID, E-mail: nsakata@cdhd.idaho.gov. Jennifer H. Tripp, Southwest District Health, Caldwell, ID, E-mail: jtripp@phd3.state.id.us. Rachel Hess, Center for Research on Health Care, Pittsburgh PA, E-mail: rah670@pitt.edu. Paolo Piazza and Charles R. Rinaldo, Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, E-mails: paolo@pitt.edu and rinaldo@pitt.edu.

REFERENCES

