Case Report: Chronic Microsporidial Enteritis in a Missionary from Mozambique

James R. Palmieri,* Shaadi F. Elswaifi, David S. Lindsay, Gretchen Junko, and Cathy Callahan

Department of Microbiology Infectious and Emerging Diseases, and Department of Obstetrics and Gynecology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia; Department Biomedical Sciences and Pathobiology, Virginia Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia

Abstract. Microsporidiosis often occurs in immunocompromised persons but may also occur in those who are immunocompetent. Infection by Microsporidia involves a variety of organs and systems, most notably, intestine, lung, kidney, brain, sinuses, muscle, and eyes. *Enterocytozoon bieneusi* and *Encephalitozoon intestinalis* are associated with gastrointestinalitis, and *Enterocytozoon hellem* and *Encephalitozoon cuniculi* are associated with keratoconjunctivitis. We report a case of chronic microsporidiosis in a 28-year-old woman missionary from Mozambique who came to our diagnostic laboratory with nausea, lower abdominal pain, and frequent bowel movements. Over two years, the patient was clinically assessed and treated for malaria and giardiasis without laboratory diagnosis while in Mozambique. Identification of the causative agent of her condition was not attempted during the course of her illness in Mozambique. Furthermore, adverse effects of malaria and giardiasis medications may have exacerbated the chronic illness in this patient and mimicked chronic microsporidiosis.

Microsporidia is a phylum of spore-producing unicellular parasites. Once considered to be protists, they are now classified as a phylum under the Kingdom Fungi.1 To date, more than 1,200 species belonging to 143 genera that have been described as parasites of a wide range of vertebrate and invertebrate hosts. There are at least 14 microsporidian species identified as human pathogens. However, only a few genera are of medical importance, including *Enterocytozoon* and *Encephalitozoon*.

Microsporidiosis more often occurs in persons who are immunocompromised, although the disease may occur in persons who are immunocompetent.2 The disease involves a variety of organs and systems, most notably, intestine, lung, kidney, brain, sinuses, muscle, and eyes. *Enterocytozoon bieneusi* and *Encephalitozoon intestinalis* are associated with gastroenteritis, and *Encephalitozoon hellem* and *Encephalitozoon cuniculi* are associated with keratoconjunctivitis.3,4 We report a case of chronic microsporidiosis from Mozambique.

On February 10, 2010, a 28-year-old woman missionary from Mozambique came to our diagnostic laboratory with nausea, lower abdominal pain, and frequent bowel movements that were up to 10 per day. The patient had visited Pemba, Mozambique many times since December 2008. The patient reported severe diarrhea and nausea that lasted more than a week after her return to the United States in December 2008. Symptoms recurred periodically over the following year, especially on an empty stomach. During September and October of 2009 the patient experienced severe diarrhea and vomiting.

At this time, the patient visited a local clinic in Mozambique, was clinically assessed without laboratory diagnosis, and subsequently treated for malaria with 20 mg of artemether and 120 mg of lumefantrine (Coartem®), which lessened the severity of her symptoms. Periodic nausea, stomach cramps, and diarrhea recurred over the following year. The patient was then treated with metronidazole for giardiasis at the same clinic, again without laboratory diagnosis. Her symptoms subsequently improved but did not completely resolve. The patient also reported keratoconjunctivitis 5–6 times throughout the course of her illness while in Mozambique. During December 2009–January 2010, the patient reported increased stomach pain and up to 10 bowel movements per day.

Upon the patient’s return to the United States in January 2010, she visited a gynecologist to be evaluated for a potential gynecologic source of her abdominal discomfort. A diagnosis of a urinary tract infection was made and she was prescribed sulfamethoxazole, trimethoprim, and metronidazole. The gynecologist also recommended consulting a gastroenterologist because of her travel history to Africa.

On February 10, 2010, a fecal sample was submitted to our diagnostic laboratory for evaluation. This was the first time since the beginning of the patient’s illness that a fecal sample was examined. The sample was small, soft, and pasty. The sample had an especially foul and objectionable odor. Direct microscopic examination of the fecal sample initially showed a normal appearance with no fatty droplets, occult blood, ova, or parasites. After concentration and multiple examinations by using phase contrast microscopy, no parasites or ova were found. The fecal mass was then preserved in 10% formalin and a portion was diluted in saline and reexamined by using phase-contrast microscopy. Many ovoid spore-like structures were observed in multiple samples. Initially, the spores were incorrectly identified as *Cystoisospora* spp. on the basis of shape, but not size.

The patient provided this diagnosis to her gastroenterologist. The gastroenterologist noted that the patient’s immune system was not compromised and thus was not convinced of the diagnosis of cystoisosporiasis, but prescribed 25 mg of pyrimethamine (Daraprim®) and leucovorin for 10 days. The patient completed a 10-day course of pyrimethamine but did not take the leucovorin and experienced only partial relief of her symptoms. The next day, fecal samples were reexamined in our laboratory, and the size of the spores accurately measured and found to be 4.0 μm in length and 2.5 μm in width. On the basis of the reexamination, the size, shape, and appearance of the spores were consistent with Microsporidia. Treatment with 400 mg of albendazol was recommended. The patient took two courses of albendazol one week apart, had complete recovery, and has been free of symptoms as of May 26, 2010.

Microsporidiosis has emerged as an opportunistic disease in Africa that is associated with immunocompromised persons who are immunocompetent. 2 The disease involves a variety of organs and systems, most notably, intestine, lung, kidney, brain, sinuses, muscle, and eyes. *Enterocytozoon bieneusi* and *Encephalitozoon intestinalis* are associated with gastroenteritis, and *Enterocytozoon hellem* and *Encephalitozoon cuniculi* are associated with keratoconjunctivitis. We report a case of chronic microsporidiosis from Mozambique who came to our diagnostic laboratory with nausea, lower abdominal pain, and frequent bowel movements. Over two years, the patient was clinically assessed and treated for malaria and giardiasis without laboratory diagnosis while in Mozambique. Identification of the causative agent of her condition was not attempted during the course of her illness in Mozambique. Furthermore, adverse effects of malaria and giardiasis medications may have exacerbated the chronic illness in this patient and mimicked chronic microsporidiosis.
or those with acquired immunodeficiency syndrome.3 Enterox
cytotroza bienesi and Encephalitozoon intestinalis are two of
the most common microsporidian parasites that infect humans
and cause diarrhea and systemic disease.6 Spores of microspo-
ridia have been reported in drinking water, soil, and domest-
tic and wild animals in Africa, which suggests waterborne,
foodborne, zoonotic, or anthropogenic transmission and may
explain how the patient acquired the infection during her stay
in Mozambique.14

There are several factors that contributed to the chronic
nature of this patient’s illness. As a missionary, the patient
was exposed to primitive conditions in rural areas of Mozambique,
with questionable food and water sources, for extended periods
of time. The patient’s initial symptoms that occurred while she
was in Mozambique were indicative of gastrointestinal illness.
Although the patient promptly visited the local clinic, a defini-
tive diagnosis was not made and her illness was assumed to
be malaria because this disease is endemic to Mozambique.9–12

The incorrect diagnosis of malaria was apparently made solely
on the basis of the patient’s symptoms of nausea and vomiting
and explains why Coartem® did not relieve the patient’s symp-
toms. Ironically, some of the adverse effects of Coartem® are
diarrhea, and abdominal pain.13

An apparent tentative diagnosis of giardiasis was made by
the same clinic in Mozambique on the basis of her upset stom-
ach, nausea, and diarrhea. This diagnosis was also apparently
made without a definitive diagnosis, which explains why met-
ronidazole did not completely relieve the patient’s symptoms.
The patient’s visit to the United States and to a gynecologist
resulted in her treatment for a urinary tract infection even
though her original symptoms were gastrointestinal. Her gas-
trointestinal and genitourinary symptoms may be explained by
the adverse effects of metronidazole, which include nau-
sea, stomach pain, diarrhea, vomiting, and vaginal irritation.14
Alternatively, the patient may also have had a concurrent
underlying urinary tract infection.

Because the patient’s symptoms were mainly gastroin-
testinal, her keratoconjunctivitis was overlooked during the
course of her illness and may not have been related to the
microsporidial infection. However, keratoconjunctivitis is
associated with microsporidiosis, especially with infections by
Encephalitozoon hellem and Encephalitozoon cuniculi.3,4

Microsporidial infections are not life-threatening in the
immunocompetent patient but are one of the most frequent
life-threatening opportunistic infections in the immunocom-
promised patient.15,16 Microsporidia became prominent as a
common cause of diarrhea in patients with acquired immu-
nodeficiency syndrome and is now emerging as a patho-
gen responsible for severe diarrhea in solid organ transplant
patients.17 Thus, the inability to perform a laboratory diagnosis
and identify the source of the patient’s illness may have resulted in
unnecessary treatment for malaria and giardiasis. Her gas-
troenteritis in Mozambique may not have been caused by
infection with Microsporidia. Treatments for malaria and giar-
diasis may have exacerbated her gastroenteritis. Alternatively,
while in Mozambique, she may have had undiagnosed chronic
microsporidiosis. There is no solid evidence of the source of
this patient’s gastroenteritis while in Mozambique.

According to the Centers for Diseases Control and Preven-
tion, laboratory diagnosis of microsporidiosis is made by using
light microscopic examination, special stains, transmission elec-
tron microscopy (which is not feasible for routine diagnosis),
an immunofluorescent assay with monoclonal and or polyclonal
antibodies, and molecular methods that use the polymerase
chain reaction. However, many of these procedures are not
routinely available in developing countries.

Our findings emphasize the need to obtain a definitive diag-
nosis by identification of the causative agent prior to treat-
ment in cases of infectious diseases, particular in developing
countries. The incorrect diagnosis of malaria and giardiasis in
this patient was made on the basis of symptoms alone. These
symptoms overlapped those of microsporidiosis and led to a
delay in proper treatment of her condition and administra-
tion of unnecessary medications. Furthermore, the adverse
effects of those medications may have compounded her origin-
al symptoms and contributed to the chronicity and severity of
her disease.

Received May 28, 2010. Accepted for publication July 16, 2010.

Authors’ addresses: James R. Palmieri and Shaadi F. Elswaifi, Depart-
ment of Microbiology Infectious and Emerging Diseases, Edward Via
College of Osteopathic Medicine, Blacksburg, VA, E-mails: jpalmieri@vcom.vt.edu and selswaifi@vcom.vt.edu; David S. Lindsay, Department of
Biomedical Sciences and Pathobiology, Virginia Maryland Regional
College of Veterinary Medicine, Blacksburg, VA, E-mail: lindsayd@vt.edu; Gretchen Junko, Edward Via College of Osteopathic Medicine,
Blacksburg, VA, E-mail: gjunko@vcom.vt.edu; Cathy Callahan, Department of Obstetrics and Gynecology, Edward Via College of
Osteopathic Medicine, Blacksburg, VA, E-mail: ccallaha@vcom.vt.edu.

REFERENCES

1. Lee SC, Corradi N, Byrnes EJ, Torres-Martinez S, Dietrich FS,
Keeling PJ, Heitman J. 2008. Microsporidia evolved from ances-
2. Centers for Disease Control and Prevention. 2010. Parasites and
Health. Microsporidiosis. Available at: http://www.dpd.cdc.gov/
Prober CG, eds. Principles and Practice of Pediatric Infectious
Elsevier, 12253–12254.
nostic and therapeutic aspects of an increasing infection. Clin
Microbiol Infect 1: 75–85.
6. Tumwine JK, Kekitiinwa A, Nabukeera N, Akiyoshi DE, Buckhol-
with diarrhea attending Mulago Hospital in Uganda. Am J Trop
7. Słodkowicz-Kowalska A, Graczyk TK, Tamang L, Jedrzejewska S,
Nowosad A, Zduńiak P, Solarczyk P, Girouda AS, Majewska
AC, 2006. Microsporidian species known to infect humans are
present in aquatic birds: implications for transmission via water.
9. Mayor A, Saute F, Aponte JJ, Almeda J, Gomez-Olive FX,
Dgedge M, 2003. Plasmodium falciparum multiple infections in
Mozambique, its relation to other malarial indices and to
prospective risk of malaria morbidity. Trop Med Int Health 8:
3–11.
Malaria in southern Mozambique: malarriometric indicators
and malaria case definition in Manhica district. Trans R Soc
Malaria in southern Mozambique: incidence of clinical malaria
in children living in a rural community in Manhica district.


