Short Report: Quantiferon-\textit{Leishmania} as an Epidemiological Tool for Evaluating the Exposure to \textit{Leishmania} Infection

Nevin Turgay,1 I. Cuneyt Balcioglu, Seray Ozensoy Toz, Yusuf Ozbel, and Stephen L. Jones
Department of Parasitology, Ege University Medical School, Izmir, Turkey; Department of Parasitology, Celal Bayar University Medical School, Manisa, Turkey; Cellestis Limited, Carnegie, Australia

Abstract. The aim of the present preliminary study was to investigate the potential of measurement of IFN-γ secretion by T cells into blood plasma using QuantiFERON assay with leishmanial antigens to determine the presence of \textit{Leishmania} infection. Blood samples from cured visceral (\(N = 18\)), and cutaneous (\(N = 20\)) leishmaniasis cases, and 20 healthy controls were tested. The IFN-γ responses to \textit{Leishmania major} H2B and \textit{Leishmania infantum} H2B antigens were detected from the majority of treated old visceral leishmaniasis cases, but not from controls. Future studies using larger groups will be required to establish the true potential of the assay for epidemiological screening of leishmaniasis.

The leishmanin skin test (LST) measures delayed-type hypersensitivity to \textit{Leishmania} and is frequently used for clinical diagnosis, and as an epidemiologic tool on the prevalence of exposure to \textit{Leishmania} parasites to characterize populations in endemic areas.1–3 Injection of parasite antigen can have side effects and cause social problems in different parts of the world. Other problems with the LST include scarcity of good manufacturing practice grade antigen and the cumbersome reading procedure.4 Thus, there is a need for a simple and rapid tool, such as an \textit{in vitro} T-lymphocyte assay based on \textit{Leishmania} antigens, to facilitate a better understanding of the epidemiological situation in leishmaniasis endemic areas.

The \textit{in vitro} measurement of cell-mediated immune responses to specific antigens can be an alternative method suitable for epidemiological studies where detection of infections by intracellular pathogens, such as \textit{Leishmania} spp., is required. QuantiFERON-TB Gold In-Tube, approved by the United States Food and Drug Administration (USFDA), is a diagnostic test system for tuberculosis using enzyme-linked immunosorbent assay (ELISA) to measure the amount of IFN-γ produced after overnight incubation of whole blood cells with specific mycobacterial antigens.2 Thus, the aim of this preliminary study was to investigate the potential of a similar QuantiFERON (QFN) assay using leishmanial antigens and whole blood from people with a history of cured cutaneous or visceral leishmaniasis to monitor previous exposure to \textit{Leishmania} infection. The new non-invasive diagnostic tool measures IFN-γ secretion by T cells in response to parasite antigen.

Peripheral whole blood samples were collected from 38 previously diagnosed and successfully treated leishmaniasis patients (18 visceral leishmaniasis [VL] cases caused by \textit{Leishmania infantum} MON-1 and 20 cutaneous leishmaniasis [CL] cases caused by \textit{Leishmania tropica}, healed with scarring). Twenty healthy controls from non-endemic areas were also included in the study. All patients and healthy volunteers gave their written informed consents to participate in this study. Initial screening of 16 potential antigens identified two candidate molecules (Histone H2B and PSA-2) that produced requisite sensitivity and specificity. There is significant amino acid sequence homology among \textit{Leishmania} spp. for both these proteins. The leishmanial antigen panel used for QFN testing was as follows: \textit{Leishmania major} H2B, \textit{L. infantum} H2B, \textit{L. major} PSA-2, \textit{L. infantum} PSA-2, and a mixture of all antigens. Each antigen consisted of a pool of 10 peptides (22-28mer) covering the amino acid sequence of H2B or predicted CD4 T cell epitopes of PSA-2. Whole \textit{L. infantum} lysate, sterile phosphate-buffered saline (PBS) (no-antigen), and phytohemagglutinin (PHA) (positive mitogen) were also used as controls. Blood samples (9–10 mL) from patients and healthy controls were collected in tubes containing heparin and were kept at 17–27°C during transportation. One mL aliquots of mixed heparinized whole blood were incubated in plasma separating gel filled tubes with 100 μL leishmanial antigens, sterile PBS or PHA. After thorough mixing, tubes were placed upright in a 37°C incubator for 20 hrs without humidity and CO₂. After incubation and centrifugation of tubes at 3,000 g for 15 min, individual plasma samples were harvested from above the gel and stored at 2–8°C for up to 8 weeks before ELISA measurement of IFN-γ. The QFN-ELISA assay was performed using CMI kit (Cellestis Ltd., Vic, Australia) with a 4-point standard curve of known amounts of IFN-γ in international units per mL (IU/mL) to determine the amount of IFN-γ produced in response to leishmanial antigens. Results were calculated and interpreted according to the manufacturer’s instructions. Calculations were performed using software provided by the kit manufacturer (Analysis Software v1.51, Cellestis Ltd.). Receiver operating characteristic (ROC) analysis, using 50 blood samples from volunteers in non-endemic areas (Turkey and Australia) and 18 cured VL cases from Turkey, was performed to determine the cut-off for the QFN assay using the H2B (\textit{L. infantum}) peptides. Because the 0.2 IU/mL cut-off was shown to give the highest specificity and sensitivity, volunteers with IFN-γ levels greater than 0.2 IU/mL were deemed positive.

Subjects with a previous history of VL and CL were mainly recruited from western and southeastern Turkey, respectively. The period of time between the original patient diagnosis and cure, and execution of the QFN assay, varied from 3 to 17 years for the VL cases, and from 3 to 11 years for the CL cases. Fourteen CL cases out of 20 had single lesions, whereas six cases had more than one lesion. The IFN-γ responses and reactivities to leishmanial antigens are shown in Figure 1 and Table 1. The sensitivity and specificity of QFN using H2B antigens for VL cases were 83% and 100%, respectively, and were superior to PSA-2. The QFN using H2B antigens detected only 40% of CL patients. Interestingly, leishmanial lysate failed to generate IFN-γ responses in CL patients. The IFN-γ response

*Address correspondence to Nevin Turgay, Ege University Medical School, Department of Parasitology, Bornova, Izmir 35100. E-mail: nevin-turgay@ege.edu.tr
in vitro antigen-specific IFN-γ responses on the forearm, QFN actually measures IFN-γ production results using QFN may be presumed to indicate prior asymptomatic leishmaniasis infection or exposed to Leishmania parasite without developing infection. In such asymptomatic individuals with leishmaniasis, the infection might even reactivate and cause active disease if such people become immunosuppressed later in life. Even though commercial in vitro tests are unlikely to be affordable in most markets, if IFN-γ production in QFN assay could give the information about cumulative leishmanial exposure experienced by the community, who remained negative, it might indicate the susceptible segment of the population, which could be suitable candidates for the future vaccine trials or prophylactic procedures for those in endemic areas. This work is a preliminary study aimed to examine the potential usefulness of the technique for Leishmania screening and more work needs to be carried out to explain the dynamic kinetics related to different clinical forms of leishmaniasis.

Received October 9, 2009. Accepted for publication May 3, 2010.

Acknowledgments: We are indebted to Steve Reed (Infectious Disease Research Institute, Seattle, WA) and Emanuela Handman (Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia) for provision of leishmanial antigens for initial screening studies. Cellestis provided QuantiFERON kits, antigens, and related materials, and financial support. We also thank Charles L. Jaffe and M. Ziya Alkan for reading the manuscript.

Authors’ addresses: Nevin Turgay, Seray Ozensoy Toz, and Yusuf Ozbel, Department of Parasitology, Ege University Medical School, Izmir, Turkey, E-mails: nevin.turgay@ege.edu.tr, seray.ozensoy.toz@ege.edu.tr, and yusuf.ozbel@ege.edu.tr. I. Cuneyt Balcioğlu, Department of Parasitology, Celal Bayar University Medical School, Manisa, Turkey, E-mail: drcbal@yahoo.com. Stephen L. Jones, Cellestis Limited, Carnegie, Australia, E-mail: sjones@cellestis.com.

REFERENCES

