Identification of Bartonella Infections in Febrile Human Patients from Thailand and Their Potential Animal Reservoirs

Michael Kosoy,* Ying Bai, Kelly Sheff, Christina Morway, Henry Baggett, Susan A. Maloney, Sumalee Boonmar, Saithip Bhengsri, Scott F. Dowell, Anussorn Sitdhirasdr, Kriangkrai Lerdthusnee, Jason Richardson, and Leonard F. Peruski

Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; International Emerging Infections Program, Nonthaburi, Thailand; Office of Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Ministry of Public Health, Nonthaburi, Thailand; Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand

Abstract. To determine the role of Bartonella species as causes of acute febrile illness in humans from Thailand, we used a novel strategy of co-cultivation of blood with eukaryotic cells and subsequent phylogenetic analysis of Bartonella-specific DNA products. Bartonella species were identified in 14 blood clots from febrile patients. Sequence analysis showed that more than one-half of the genotypes identified in human patients were similar or identical to homologous sequences identified in rodents from Asia and were closely related to B. elizabethae, B. rattimassiliensis, and B. tribocorum. The remaining genotypes belonged to B. henselae, B. vinsonii, and B. tami. Among the positive febrile patients, animal exposure was common: 36% reported owning either dogs or cats and 71% reported rat exposure during the 2 weeks before illness onset. The findings suggest that rodents are likely reservoirs for a substantial portion of cases of human Bartonella infections in Thailand.

INTRODUCTION

Over 30 species and subspecies of Bartonella have been identified, and it is clear from ongoing research that many more remain to be described. Globally, they reside in diverse ecological niches; many cause infections in animals, and at least 10 species have been linked to human disease. Bartonella infections are remarkable in the wide range of pathological manifestations that they cause in animals and humans, ranging from self-limiting regional lymphadenitis to severe endocarditis. Bartonellae are also unique in the manner of their association with mammalian reservoir hosts, in which they can cause a chronic bacteremia with no or few symptoms.

Commonly used detection methods for Bartonella include serology for identifying specific antibodies, culture techniques to recover viable organisms, and polymerase chain reaction (PCR)-based detection of Bartonella-specific sequences from DNA in blood and tissue samples. Serological assays are the most commonly used diagnostic approach for Bartonella infections, although conclusive identification of the Bartonella species causing a rise antibody titer is limited because of the apparent cross-reactivity between Bartonella species. Culturing on solid medium, although considered the gold standard, has its own limitations, including very low isolation rate of Bartonella from clinical specimens, especially human blood, and the time-consuming nature of the methodologies.

Molecular assays offer the potential of improved sensitivity and timeliness of Bartonella detection. One of the most impressive applications of in situ nucleic acid techniques to the study of an infectious process was direct detection of Rochalimaea (later Bartonella) microorganisms in bacillary angiomatisis tissue lesions by Relman and others.1 There is a growing trend to reliance on genotyping for microbial characterization.2 Usually, genotypes are more specific and are more easily quantified and standardized among different bacterial species than are the phenotypic markers used traditionally. This is especially true for identification of Bartonella species with their fastidious nature in terms of culture and a low capacity for discrimination by morphology or nutrient requirements. There is, however, a challenge, because PCR amplification of Bartonella-specific DNA targets directly from whole blood, likely because of the inhibitory effect of blood. Both conventional and real-time PCRs directly from human or specific animal-blood specimens lack the sensitivity to detect bacteria, sometimes even from a bacteremic blood.

In Thailand, little is known about the burden of Bartonella infections in humans and potential zoonotic reservoirs. Data on human infections have been limited to culturing strains of two Bartonella species (B. henselae, agent of cat scratch disease and B. tami, a novel human pathogen recently described from cases of febrile illness3−4) and two serological investigations.5 Bartonella species have been isolated in Thailand from many mammalian hosts, including rodents, cats, and dogs.5−6 No studies, however, have systematically assessed the scope of Bartonella species isolated from humans in Thailand or examined linkages to zoonotic sources. Such investigations are needed, especially in Thailand, where even rigorous etiologic studies have failed to identify the cause of febrile illnesses in up to 60% of cases.4−12 Recently, investigations using serological assays have suggested a high disease burden attributable to Bartonella infections (S. Sutthirattana and others, unpublished data).

As part of a prospective study to determine causes of acute febrile illness in northern and northeastern Thailand, we evaluated data from two provinces in rural Thailand to examine the etiologies of acute febrile illness, including the role of Bartonella species during 2002−2003. To address the limitations of common diagnostic approaches for Bartonella, we used a novel strategy of co-cultivation of blood clots with eukaryotic cells, DNA amplification of positive cultures, and subsequent phylogenetic analysis of Bartonella-specific products. To investigate potential animal reservoirs for Bartonella bacteria causing human illnesses in Thailand, genotypes from human infections were compared with Bartonella strains

* Address correspondence to Michael Kosoy, Division and Vector Borne Infectious Diseases, Centers for Diseases Control and Prevention, Fort Collins, CO 80521. E-mail: mkosoy@cdc.gov
isolated from animals in Thailand and globally. Here, we report
the findings based on this multifaceted laboratory approach.

MATERIALS AND METHODS

Patients and samples. This study was a part of an Institutional
Review Board (IRB)-approved investigation to deter-
mine etiologies of acute febrile illnesses among patients in
rural Thailand. We enrolled febrile patients presenting to
outpatient and inpatient departments of two community
hospitals (ranging in size from 30 to 90 beds), which served
as entry points for medical evaluation in each of two Thai
provinces (Chiang Rai and Khon Kaen) from February 2002
to March 2003. Chiang Rai province is in northern Thailand,

did not have a population of 1,167,780. Khon Kaen is in northeastern Thailand with a population of
1,801,016. Eligible patients were those ≥7 years old with a
documented fever > 38°C. Patients were excluded if they had
a history of fever ≥2 weeks, an apparent focal infection (e.g.,
pharyngitis, meningitis, or urinary tract infection) or an infection
that could be definitively diagnosed clinically (e.g., mumps,
croup, varicella, parvovirus, measles, or rubella), received an
immunization in the preceding 48 hours, or received blood
products in the previous 6 months. All patients completed
a questionnaire with multiple epidemiological and clinical
questions. Blood specimens were collected from all patients
at the time of enrollment, stored at −70°C, and later shipped
to the Centers for Disease Control and Prevention (CDC) in Fort Collins, Colorado.

Culturing. Vero E6 cell monolayers were grown in T150
tissue-culture flasks (Corning, Corning, NY) containing
M199-E growth medium with 10% fetal bovine serum and
L-glutamine until they became confluent. Immediately before
the addition of the patient blood, the growth medium was
removed. Blood clots (100 μL) were mixed with 2 mL of the
medium. The suspension was used to inoculate the cell
monolayers in flasks, and inoculated cells were incubated on
a rocking platform at room temperature for 30 minutes. After
the original incubation, 50 mL of the Dulbecco’s modified
eagle medium (DMEM) maintenance medium with 2% fetal
bovine serum and without L-glutamine was added to the
flasks. The inoculated cells were incubated at 35°C in 5% CO₂,
and were harvested with sterile glass beads after 7 days of
incubation.

PCR. DNA extractions from Vero-E6 cells inoculated with
human blood were performed using the Qiagen extraction kit (Qiagen, Valencia, CA) using the blood protocol provided
by the manufacturer. PCR was performed using published
primers BhCS781.p and BhCS1137.n to generate a 379-bp
amplicon of the Bartonella citrate synthase gene (gltA).13 PCR
amplifications were performed in a 25-μL reaction mixture
containing 5 μL of 5× PCR buffer, 300 nM of each primer,
400 μM of premixed deoxynucleotide triphosphate (dNTP)
solution (Promega, Madison, WI), 1 U Taq DNA polymerase
(Promega, Madison, WI), and 5 μL DNA template. PCR was
carried out in a PTC 200 Peltier thermal cycler (MJ Research,
Foster City, CA). Sequencing reactions were carried out in a PTC 200
Peltier Thermal cycler using the same primers for the PCR
assay with a final concentration of 160 nM. Cycle parameters
for the sequencing reactions were 45 cycles at 96°C for 20
seconds, 50°C for 20 seconds, and 60°C for 4 minutes.

Phylogenetic analysis. PCR-positive co-cultures from human
patients were characterized by DNA sequence analysis of the
gltA fragment to confirm their belonging to the Bartonella
genus and to determine their phylogenetic relatedness to
known Bartonella species according to La Scola and others.14 Relatedness was also assessed to animal isolates using > 300
amplicons from rodents, insectivores, dogs, cats, ruminants, and
other mammals from Thailand and neighboring Asian countries.

RESULTS

Detection and identification of Bartonella genotypes in
human blood. Bartonella DNA was detected in 20 of 261
(7.7%) blood clots co-cultivated with Vero E6 cells. Sequence
analysis of the gltA amplicons was completed for 14 of the posi-
tive samples. For this study, only amplicons with unambiguous
sequences aligned within the range of the Bartonella
genus were considered to be confirmed positives; further analysis was
restricted to these 14 identified sequences. The analysis showed
that these sequences were heterogeneous and represented
13 unique genotypes. Each gltA sequence submitted to
GenBank was assigned an accession number (Table 1).

Sequence analysis of Bartonella DNA detected in human
blood. Genotypes obtained from the blood of two patients

Table 1

<table>
<thead>
<tr>
<th>Genotype</th>
<th>GenBank accession</th>
<th>Bartonella species relatedness</th>
<th>Sequence similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-00032</td>
<td>GQ200855</td>
<td>B. ratnasiensis</td>
<td>97.9</td>
</tr>
<tr>
<td>45-00015</td>
<td>GQ200856</td>
<td>Unknown</td>
<td>< 95.0</td>
</tr>
<tr>
<td>45-00398</td>
<td>GQ200857</td>
<td>B. vinsonii subsp. arupensis</td>
<td>98.7</td>
</tr>
<tr>
<td>45-00439</td>
<td>GQ200858</td>
<td>B. henselae</td>
<td>100.0</td>
</tr>
<tr>
<td>45-00515</td>
<td>GQ200860</td>
<td>Unknown</td>
<td>< 95.0</td>
</tr>
<tr>
<td>45-00135</td>
<td>GQ200861</td>
<td>B. vinsonii subsp. vinsonii</td>
<td>97.9</td>
</tr>
<tr>
<td>45-00239</td>
<td>GQ200862</td>
<td>B. taimae</td>
<td>100.0</td>
</tr>
<tr>
<td>45-00518</td>
<td>GQ225705</td>
<td>Unknown</td>
<td>95.0</td>
</tr>
<tr>
<td>45-00534</td>
<td>GQ225706</td>
<td>B. tribocorum</td>
<td>97.0</td>
</tr>
<tr>
<td>45-00551</td>
<td>GQ225707</td>
<td>B. elizabethae</td>
<td>95.4</td>
</tr>
<tr>
<td>45-00559</td>
<td>GQ225708</td>
<td>B. vinsonii subsp. arupensis</td>
<td>99.3</td>
</tr>
<tr>
<td>45-00249</td>
<td>GQ225709</td>
<td>B. henselae</td>
<td>100.0</td>
</tr>
<tr>
<td>45-00311</td>
<td>GQ225710</td>
<td>B. elizabethae</td>
<td>97.9</td>
</tr>
<tr>
<td>45-00517</td>
<td>GQ225712</td>
<td>Unknown</td>
<td>< 95.0</td>
</tr>
</tbody>
</table>
(45-00249 and 45-00439) were identical to \textit{B. henselae}, the agent of cat scratch disease. All other 12 genotypes represented unique sequences with different degrees of relatedness to described \textit{Bartonella} species. Two genotypes (45-00311 and 45-00551) were relatively close (identity 97.9% and 95.4%) to \textit{B. elizabethae}, a bacterium originally isolated from a human patient with endocarditis from Massachusetts, United States.13 One genotype (45-00534) exhibited its closest phylogenetic relationship (97.0%) to \textit{B. tribocorum}, originally isolated from a domestic rat in France16; another genotype (45-00032) was closer (similarity of 97.9%) to \textit{B. rattimassiliensis} that was recovered from a European rat \textit{Rattus norvegicus}.12 One genotype (45-00015) was similar but not identical to \textit{B. tribocorum} and \textit{B. rattimassiliensis} (similarity of 94.3% and 91.3%, respectively). A group of four genotypes (45-00515, 45-00517, and 45-00518) were similar to each other (identity 97.0 to 98.2%) and represented a distinct phylogenetic lineage in the genus \textit{Bartonella}. Two genotypes (45-00398 and 45-00559) were related (identity 98.7% and 99.3%, respectively) to \textit{B. vinsonii} \textit{subsp. arupensis}, an organism characterized from an Asian cattle rancher in Wyoming, United States.18 Another genotype (45-00135) found in the blood of Thai patients was similar (identity 97.9%) to \textit{B. vinsonii} \textit{subsp. vinsonii}, which had been originally isolated from a Canadian vole by Baker.19 Finally, one genotype (45-00239) was obtained from a cell culture co-cultivated with a patient blood that yielded pure culture isolate, which has been described as a novel species—\textit{B. tamiae} (Figure 1).11

Figure 1. Phylogenetic relationships between the \textit{gltA} sequences of \textit{Bartonella} genotypes detected in 16 human patients from Thailand, previously described \textit{Bartonella} species, and selected genotypes detected in mammals in Asia. The phylogenetic tree was constructed by the N–J method and bootstrap values with 1,000 replicates. Only bootstrap replicates > 70% are noted. The name and accession number of genotypes detected in human patients are outlined in the text box. Each unique \textit{Bartonella} species or genotype detected in mammals is provided with the name of the type strain and its GenBank accession number.
Bartonella-positive febrile patients. Among the 14 febrile patients with *Bartonella* infection, the median age was 28 years, 57% were male, 79% lived in Chiang Rai, and 43% were rice farmers. Common clinical characteristics of *Bartonella*-infected patients included headache (100%), lethargy (86%), and muscle pain (79%). Four patients had conjunctival suffusion noted on physical exam. Five (36%) patients were hospitalized, and 50% had anemia defined as hemoglobin < 12 mg/dL. One patient had hemoglobin < 10 mg/dL. Animal exposure was common; 36% reported owning either dogs or cats, and 71% reported rat exposure during the 2 weeks before illness onset, defined as having seen a rat around their home or field or having participated in a local rat-control program (Table 2). However, the frequency of animal ownership and rat exposure did not differ from that reported by febrile patients without *Bartonella* infection or a group of afebrile controls (S. Sutthirattana and others, unpublished data).

Phylogenetic relations between Bartonella genotypes identified in human and animals. To gain additional information on potential animal reservoirs for human infections, we compared the homologous sequence fragments of *Bartonella* genotypes, which were different from *B. henselae* and probably associated with domestic cats, with those derived from diverse animal sources from Thailand and other Asian countries.

The genotype 45-00032 identified as *B. ratti massiliensis* was completely identical to the homologous sequence of the strain R19192th (GenBank accession FJ655409) obtained from a black rat (*Rattus rattus*) from Surat Thani province in Thailand and was more distantly related (99.0% similarity) to a group of *Bartonella* strains (type strain Bi3781th; GenBank accession AY269418) obtained from bandicoot rats (*Bandicota indica*) from Chiang Rai province, Thailand.7 The genotype 45-00551 identified as *B. elizabethae* was very similar by the corresponding fragment to the isolates from a tree squirrel (*Tupaia glis*) from Chiang Mai, Thailand and from a Norwegian rat (*R. norvegicus*) from Ubon Ratchathani province, Thailand (similarity 99.7% with 1-bp-mismatch). Both animal isolates were also identical to the strain from a rat *R. norvegicus* from Phra Nakhon Si Ayutthaya province, Thailand.8 Another previously unidentified genotype (45-00015) was 96.1% similar to an isolate from a strain (*Rattus rattus*) from Chiang Mai, Thailand.8

Genotype 45-00534 was close to several *Bartonella* strains that are common among rats of the genera *Bandicota* and *Rattus* in Thailand: 99.1% similarity with strain B19435th (GenBank accession AY589562) obtained from *B. bengalensis* from Dhaka, Bangladesh.21 The group of closely related genotypes (45-00515, 45-00517, and 45-00518), which were different from all known *Bartonella* species, were most similar (98.5%) to an isolate from a rat *R. norvegicus* from Phra Nakhon Si Ayutthaya province, Thailand. Another previously unidentified genotype (45-00015) was 96.1% similar to an isolate (strain R18771th; GenBank accession) from a rat *Rattus* from Chiang Mai, Thailand.8

Genotypes similar to *B. vinsonii* subsp. *arupensis* have not been found in the blood of rodents from any Asian country besides *B. vinsonii* subsp. *vinsonii*, which was identified in stray dogs from Bangkok and Chonburi. The genome from a human patient, which was closely related to *B. vinsonii* subsp. *vinsonii*, did not exhibit a good match with any strains detected in Thai rodents; the closest but still distant relationship was found between this genotype and two strains from the voles *Eothenomys miletus* from southwestern China (Yunnan province).20

Genotype 45-00239 belongs to the strain that, along with two more isolates from human patients, was described under the name of *B. tamiiae*. Similar sequences have not been found in rodents or other mammals; however, the *gltA* and internal transcribed spacer (ITS) fragments specific to *B. tamiiae* were detected in chigger mites from Thailand (H. Kabeya and others, unpublished data), and similar ITS sequences were also reported from ixodid ticks from Virginia, United States.22

DISCUSSION

Our study found that the spectrum of *Bartonella* species associated with human infections in Thailand is likely much wider than expected based on reports from Europe and the United States, which identified a causative association for human infections with only two well-recognized *Bartonella*

Table 2

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients</th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age in years (range)</td>
<td></td>
<td>28</td>
<td>(7–56)</td>
</tr>
<tr>
<td>Median fever duration in days (range)</td>
<td></td>
<td>3</td>
<td>(1–14)</td>
</tr>
<tr>
<td>Male gender</td>
<td></td>
<td>8</td>
<td>57.1</td>
</tr>
<tr>
<td>Province</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiangrai</td>
<td></td>
<td>11</td>
<td>78.6</td>
</tr>
<tr>
<td>Khonkaen</td>
<td></td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td></td>
<td>6</td>
<td>42.9</td>
</tr>
<tr>
<td>Student</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Shopkeeper</td>
<td></td>
<td>2</td>
<td>14.3</td>
</tr>
<tr>
<td>Day laborer</td>
<td></td>
<td>1</td>
<td>7.1</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Lethargy</td>
<td></td>
<td>12</td>
<td>85.7</td>
</tr>
<tr>
<td>Muscle pain</td>
<td></td>
<td>11</td>
<td>78.6</td>
</tr>
<tr>
<td>Cough</td>
<td></td>
<td>10</td>
<td>71.4</td>
</tr>
<tr>
<td>Chest pain</td>
<td></td>
<td>6</td>
<td>42.9</td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Conjunctival suffusion</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Illness required hospitalization</td>
<td></td>
<td>5</td>
<td>35.7</td>
</tr>
<tr>
<td>Laboratory results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated alkaline phosphatase (> 121 IU/dL)</td>
<td></td>
<td>9</td>
<td>64.3</td>
</tr>
<tr>
<td>Anemia (hemoglobin < 12 mg/dL)</td>
<td></td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Elevated aspartate aminotransferase (> 36 IU/dL)</td>
<td></td>
<td>6</td>
<td>42.9</td>
</tr>
<tr>
<td>Elevated alanine aminotransferase (> 36 IU/dL)</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>White blood cell count (< 10,000 cells/μL)</td>
<td></td>
<td>6</td>
<td>42.9</td>
</tr>
<tr>
<td>White blood cell count (< 5,000 cells/μL)</td>
<td></td>
<td>1</td>
<td>7.1</td>
</tr>
<tr>
<td>Thrombocytopenia (platelet count < 150 × 10^3/μL)</td>
<td></td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>Elevated blood urea nitrogen (≥ 21 mg/dL)</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Animal exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owned any animal</td>
<td></td>
<td>10</td>
<td>71.4</td>
</tr>
<tr>
<td>Owned dog</td>
<td></td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>Owned cat</td>
<td></td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>Rat exposure during 2 weeks before illness onset*</td>
<td></td>
<td>8</td>
<td>57.1</td>
</tr>
</tbody>
</table>

*Reported having seen a rat at the patient’s home or field or having participated in a local rat-control program that rewards participants for documented rat extermination.
species beyond *Homo sapiens* and *B. quintana*. Although we used only a portion of the citrate synthase gene for phylogenetic analysis, this gene has been shown to be a reliable tool for distinguishing between *Bartonella* species and closely related *Bartonella* genotypes.12 An identification of genotypes based on sequencing of one gene fragment presents an evident limitation for a characterization of etiological agents for human illnesses; however, our results indicated that most identified human cases (12 of 14) were associated with species other than *B. henselae* and *B. quintana*.

Our study also showed that the cell-culture technique combined with a subsequent PCR amplification of a specific marker and sequencing of the amplicons can be an effective tool for identification of genotypes of *Bartonella* infections associated with the human cases. All attempts to apply a single-step PCR-based assay directly in the blood of the 261 patients targeting the fragment of the gltA gene were unsuccessful (unpublished data). Successful identification of the *Bartonella* bacteria on cells rarely leads to successful propagation of the isolates on solid agar. Among 14 infected cells in our study, only 1 cell was successfully adapted to agar, and this cell has also been used for description of a novel *Bartonella* species (*B. tamiiae*). Strictly speaking, detection of *Bartonella* genotypes in human patient blood co-cultivated with a cell line cannot reliably prove a role of the detected agents as causes of specific cases. We are early in our experience with interpreting such findings. Nevertheless, a potential etiologic association is supported by three facts: (1) the clinical specimens were ing such findings. Nevertheless, a potential etiologic association is supported by three facts: (1) the clinical specimens were

IDENTIFICATION OF *BARTONELLA* INFECTIONS IN THAI PATIENTS

