Short Report: Emergence of New Alleles of the MSP-3α Gene in Plasmodium vivax Isolates from Korea

Deok Hwa Nam,† Jun Seo Oh,† Myoung Hyun Nam, Hae Chul Park, Chae Seung Lim,* Won Ja Lee, Jetsumon Sattabongkot, Terry A. Klein, and Francisco J. Ayala

Department of Laboratory Medicine, Brain Korea 21 Graduate School of Medicine, College of Medicine, Korea University, Seoul, Korea; Laboratory of Cellular Oncology, Brain Korea 21 Graduate School of Medicine, College of Medicine, Korea University, Seoul, Korea; Laboratory of Medical Entomology, Korean Center for Disease Control and Prevention, Ministry of Health and Welfare, Seoul, Korea; Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Science, Bangkok, Thailand; Force Health Protection, 65th Medical Brigade, Unit 15281, Seoul, Korea; Department of Ecology and Evolutionary Biology, University of California, Irvine, California

Abstract. Nucleotide sequence analysis of the Plasmodium vivax PvMSP-3α gene was conducted on blood from 143 malaria patients admitted to Korea University Medical Center from 1996 to 2007 in the Republic of Korea (ROK). From 1996 to 2002, the PvMSP-3α alleles were of two types, SKOR-67 (2.53 kb) and SKOR-69 (1.78 kb), which differed in length and amino acid sequence. Two new variants with similar size to SKOR-67 were first observed in 2002 and in 2006–2007 accounted for nearly 50% (25/51) of the sampled isolates. The new variants had the same amino acid sequence as SKOR-69 in the N-terminal region, but in Blocks I and II and in the C-terminal region, they were similar to previously reported isolates from Thailand, Papua New Guinea, India, Brazil, and Ecuador strains.

The Plasmodium vivax merozoite surface protein-3α (PvMSP-3α) is a vaccine candidate surface protein that is geographically polymorphic. Previous PvMSP-3α gene has a large central domain with 20–30% alanine residues, which occupies the first and fourth positions of the typical heptad repeat unit. These heptad repeat units are predicted to form coiled alpha-helical structures that may facilitate anchoring the proteins to the merozoite surface. Globally, three major alleles of the PvMSP-3α gene are known to be widely distributed; their sizes are approximately 1.5, 2.1, and 2.4 kb. Rayner and colleagues showed nucleotide diversity among isolates of the PvMSP-3α gene collected over 40 years from various geographic areas. In Papua New Guinea (PNG), Bruce and others identified 24 alleles of the PvMSP-3α gene based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Two major types, 1.5 and 1.9 kb, with deletions in Block I, have been observed in many Thai isolates. In western Thailand, parasites belonging to the two major deletion types in Block I accounted for more than 25% of the isolates analyzed.

Since the first report of autochthonous Plasmodium vivax transmission in the Republic of Korea (ROK) in 1993, malaria rapidly increased to a high of 4,142 cases by 2000 (Table 1). Previous PvMSP-3α gene sequences identified two distinct geographically coexisting Korean types, SKOR-67 and SKOR-69 that were different in length and amino acid sequence. The sequence homology of the PvMSP-3α gene between the SKOR-67 and Belem strains, and between the SKOR-69 and Chesson strains, were 93.0% and 99.2%, respectively. The aim of this study was to identify genetic variation of the PvMSP-3α gene from Korean isolates over time (1996–2007).

The nucleotide sequence of the PVMS-P-3α gene was analyzed from Korean isolates from 1996 through 2007. A total of 143 Korean patients (22–60 yrs of age) admitted to Korea university medical center with confirmed P. vivax positive blood smears were recruited under an approved human-use protocol (Korea National Institutes of Health, Seoul, ROK). The medical history of the volunteer malaria patients indicated autochthonous transmission of malaria in the ROK. All cases received supervised treatment with 2,000 mg hydroxychloroquine sulfone given orally (800 mg initial dose, followed by 400 mg at 6, 24, and 48 h). Following hydroxychloroquine therapy, outpatients received oral primaquine (15 mg/day for 14 days). Whole blood from each patient was collected and stored at −80°C. The DNA was extracted from frozen pellets using AquaPure genomic DNA kits (Bio-Rad Laboratories, Hercules, CA) following the manufacturer’s instructions. After precipitation with 100% ethanol, DNA was dissolved in TE buffer (10 mM Tris and 1 mM EDTA, pH 8.0) and stored at −20°C until used.

The PvMSP-3α gene was amplified by PCR using two primers: P1 5′-CACCGAAGCCCATTTAGG-3′ and P2 5′-CGTTGTTTAGTGTC-3′. The primers’ final concentration was 0.1 μM in 100 μL of reaction mixture (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, and 0.2 mM of each dNTP) with 10 μL of DNA and 2.5 units of Ex Taq polymerase (TaKaRa Shuzo Co., Shiga, Japan). The thermal cycler (Biosystem model 2720, Applied Biosystems, Foster City, CA) conditions were 94°C for 3 min, followed by 35 cycles at 94°C for 30 sec/56°C for 30 sec/72°C for 2.5 min, with a final 5-min extension step at 72°C, followed by restriction digest with EcoR I (5 units of enzyme/reaction; TaKaRa Shuzo Co.) and Pst I (5 units of enzyme/reaction; TaKaRa Shuzo Co.). The PvMSP-3α amplified products were size fractionated by electrophoresis on 1.0% agarose gels with ethidium bromide at 0.5 μg/mL. Three cases with two separate PCR amplified bands (2.2kb and 1.5kb) were interpreted as double infections (Table 1).

The amplified DNA products from only one PCR were cloned into the pCR II plasmid from a TOPO TA cloning kit (Invitrogen, Carlsbad, CA). Three white colonies selected from each of the samples were completely sequenced in both directions. Sequences from the subcloned PCR products were identical to those obtained by direct sequencing in eight samples. Sequences obtained in this study have been deposited to GenBank with accession nos. EF204144–EF204171. From
the 143 amplified PCR products, two allelic variants, with respect to size (2.2 and 1.5 kb), were observed. The 2.2 kb samples exhibited three different patterns with respect to EcoRI or PstI digestion. The previously reported SKOR-67 type (2.2 kb) was cleaved by EcoRI into 989 bp and 1,300 bp, whereas SKOR-69 (1.5 kb) was not cleaved. Among the 2.2 kb products, one new variant (KPVMSP3a02-24) was first observed in 2002 and another (KPVMSP3a05-4) in 2005, which differed in sequence from the original SKOR-67 sequences of similar length. Among the new variants, two clear restriction patterns were produced by digestion with PstI (Figure 1).

Two previously identified Korean alleles (SKOR-67 and SKOR-69) were identical with few frequency differences observed in 1996. The incidence of SKOR-69 rapidly decreased in more recently collected samples (Table 1), while new alleles KPVMSP3a02-24 and KPVMSP3a05-4 appeared and increased in frequency over time (Table 1).

There were four distinct PvMSP3α sequences: SKOR-67 (N = 27), SKOR-69 (N = 17), KPVMSP3a02-24 (N = 6), and KPVMSP3a05-4 (N = 10). The latter 16 new isolates were different from worldwide isolates. The nucleotide sequences of six new KPVMSP3a02-24 variants were closest to SKOR-69 in the N-terminal (100%) and in the first part of both Block I (98.7%) and Block II regions (99%) with three mutation sites; however, the second and third part of the Block I region was closest to the Ecuador and Thai-NYU isolates (99.5%) and the third part of Block I was closest to the PNG and India-NYU isolates (99.8%) with one mutation site, whereas the fourth part of Block I was similar to IEC Brazil, India-NYU, and PNG isolates (96.6–98.9%) with one or three mutation sites (Figure 2). The 10 new KPVMSP3a05-04 sequences were identical to SKOR-69 in the N-terminal (100%) and first part of Block I (100%), whereas the second part of Block I was identical to the Ecuador and Thai NYU isolates (100%), and the third part of Block I was closest to the PNG and India-NYU isolates (98.9–99.5%). The nucleotide sequence of the fourth part of Block I in the new KPVMSP3a05-04 variant was different from sequences found elsewhere, whereas Block II was similar to SKOR-67 (98%).

Table 1

<table>
<thead>
<tr>
<th>Allelic type/year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR-67 * (2,246 bp)</td>
<td>8 (57.1) §</td>
<td>5 (50.0)</td>
<td>7 (63.6)</td>
<td>10 (62.5)</td>
<td>8 (47.0)</td>
<td>4 (80.0)</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>SKOR-69 * (1,463 bp)</td>
<td>6 (42.9)</td>
<td>5 (50.0)</td>
<td>4 (36.4)</td>
<td>6 (37.5)</td>
<td>7 (41.2)</td>
<td>4 (80.0)</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>KPVMSP3a02-24 (1,243 bp)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KPVMSP3a05-4 (1,224 bp)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of malaria cases in ROK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estimated number of ROK soldiers on chemoprophylaxis</td>
<td>0</td>
<td>16,000</td>
<td>37,000</td>
<td>60,000</td>
<td>90,000</td>
<td>120,000</td>
<td>150,000</td>
</tr>
</tbody>
</table>

* Vicent strain. † Percent (%) in parentheses.

Received July 7, 2008. Accepted for publication January 18, 2010.

Financial support: Partial funding for this project was provided by the Military Infectious Diseases Research Program of the U.S. Army
Figure 2. Alignment of the PvMSP-3α amino acid sequences from Korean and other worldwide P. vivax isolates. The alignment of the sequences is made in reference to the Belem strain (AF093584). The amino acid positions are numbered at the top of the alignment, where the different regions of the gene are also indicated (see Figure 1). Dots and dashes represent identical residues and deletions, respectively. Block I is divided into four regions according to the sequence similarity to the variant Korean strains.

Medical Research and Materiel Command, Fort Detrick, MD, and the Center for Health Promotion and Preventive Medicine, Global Emerging Infections Surveillance and Response Systems, Silver Spring, MD.

Authors’ addresses: Deok Hwa Nam, Myoung Hyun Nam, and Chae Seung Lim, Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Republic of Korea, E-mail: malarim@korea.ac.kr. Jun Seo Oh, Laboratory of Cellular Oncology, Brain Korea 21 Graduate School of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea. Hae Chul Park, Laboratory of Neurodevelopment, Brain Korea 21 Graduate School of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea. Won Ja Lee, Laboratory of Medical Entomology, Korean Center for Disease Control and Prevention, Ministry of Health and Welfare, Seoul, Republic of Korea. Francisco J. Ayala, Department of Ecology and Evolutionary Biology, University of California, Irvine, CA.

Reprint requests: Chae Seung Lim, Department of Laboratory Medicine, College of Medicine, Korea University Ansan Hospital, 516, Gojan Dong, Ansan City, Gyeonggi Province, Republic of Korea, 425-707, E-mail: malarim@korea.ac.kr, Tel: +82-31-412-5300, Fax: +82-31-412-5314.

REFERENCES


