Risk Factors for Visceral Leishmaniasis in a New Epidemic Site in Amhara Region, Ethiopia

Seife Bashaye, Nohelly Nombela, Daniel Argaw, Abate Mulugeta, Merce Herrero, Javier Nieto, Carmen Chicharro, Carmen Cañavate, Pilar Aparicio, Iván Darío Vélez, Jorge Alvar, and Caryn Bern*

Abstract. We conducted a case-control study to evaluate risk factors for visceral leishmaniasis during an epidemic in a previously unaffected district of Ethiopia. We also collected blood and bone marrow specimens from dogs in the outbreak villages. In multivariable analyses of 171 matched case-control pairs, dog ownership, sleeping under an acacia tree during the day, and habitually sleeping outside at night were associated with significantly increased risk. Specimens from 7 (3.8%) dogs were positive by immunofluorescent antibody test (IFAT) and both enzyme-linked immunosorbent assays (ELISAs), whereas Leishmania DNA was detected in 5 (2.8%) bone marrow aspirates (from 3 seropositive and 2 seronegative dogs). Insecticide-treated nets may only protect a portion of those at risk. Further research on the vectors, the role of the dog in the transmission cycle, and the effect of candidate interventions are needed to design the best strategy for control.

INTRODUCTION

The Horn of Africa is one of the most important foci of visceral leishmaniasis (VL) in the world, characterized by sustained endemic transmission in several geographic sites, and intermittent epidemics often associated with population displacement and conflict. In 2005, a new epidemic of VL was reported in the district of Libo Kemkem in the highlands of northwestern Ethiopia. The outbreak occurred in a region where few cases of the disease had ever been reported before, and was hypothesized to represent introduction of the parasite by migrant agricultural laborers returning to their villages from seasonal work on the border with Sudan. A rapid epidemiologic assessment demonstrated that the outbreak appeared to have begun in Bura kebele (subdistrict), Libo Kemkem wereda (district) in 2003, and the incidence of cases as well as the number of affected kebeles was still rising in October 2005. By December 2007, a cumulative total of 2,450 primary kala-azar patients had been treated at the only VL treatment center in the area (Médecins sans Frontières-Greece, unpublished data). In the 2005 research, DNA from several strains of parasites of the Leishmania donovani complex was identified in splenic aspirate specimens from kala-azar patients and in the blood of two dogs.

Risk factor data are essential to designing the appropriate public health response to an epidemic. The most valuable contribution of such an analysis is to identify risk factors that can be modified to prevent future cases. Because of time and resource constraints, no risk factor data were collected during the rapid assessment in 2005, but the presence of infected dogs and male predominance among cases led us to hypothesize that men and boys might be at higher risk resulting from the practice of sleeping outside, often in proximity to guard dogs, to protect their cattle from theft. In February 2007, a team of investigators returned to the Amhara Region to conduct a case-control study to evaluate risk factors for outbreak-related VL.

METHODS

Human case-control study. The research was conducted in the weredas (districts) of Libo and Fogera in the highlands (average altitude 2,000 meters above sea level) of the Amhara Region of northwestern Ethiopia. Addis Zemen is the capital of Libo district, located between Bahir Dar and Gondar on the major road connecting Addis Ababa to the Red Sea. Cases were selected from the records of Médecins sans Frontières-Greece (MSF-G)/Addis Zemen Health Center (AZHC) among patients with treatment dates starting in January 2006. Addis Zemen Health Center is the only health care facility in the area with VL diagnostic capability and antileishmanial drugs. Malaria occurs seasonally in this area. Routine human immunodeficiency virus (HIV) screening had not been instituted at the AZHC at the time of the study, although a small number of HIV-VL co-infections had been recognized. None of the case patients in the current study were known to be HIV co-infected.

Patients were diagnosed by physicians at AZHC using a standard clinical case definition (fever for at least 2 weeks, associated with weight loss and/or splenomegaly), and confirmed by the direct agglutination test (DAT). The DAT was performed using standard methods and leishmanial antigen from the Institute of Tropical Medicine, Antwerp, Belgium. Titers ≥ 1:3200 were considered to be positive. For the DAT using the Antwerp antigen and protocol in an Ethiopian population, the estimated sensitivity and specificity were 94% and 93.6%, respectively. If the DAT results on two separate occasions were inconclusive, splenic aspirate was used to confirm the diagnosis. Most case patients had been treated before the case-control study began, following standard MSF practice, usually 28 days of sodium antimony gluconate. The protocol was reviewed by World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), and judged to be covered as an outbreak investigation.
Case patients were sought in their homes, based on a line listing from AZHC that included name, age, gender, name of the father or husband of the patient, village, and kebele. If a household contained more than one case, only the most recently treated case was included in the study. For each case, one matched control was chosen. The controls were chosen from the nearest house to the case household, identified by leaving the case house and turning right from the doorway. Each control was matched to the respective case by gender and age range (< 5 years, 5–14 years, 15–39 years, and 40 years of age or older). If a case of VL had ever occurred in a member of the candidate control household, or if there was no household member fulfilling the matching criteria, the next nearest household (again, turning right from the doorway) was chosen instead. The risk factor questionnaire collected data concerning domestic animals and where they were kept at night, sleeping location and habits, bed net ownership and use, house construction materials, travel to the Sudan border area, and socioeconomic indicators. For young children, parents provided consent and responded to the questionnaire.

The initial sample size calculations, based on logistic considerations, called for 100 cases and 100 controls that would have enabled the identification of risk factors associated with odds ratios of 2.3–2.5. When it became clear that further recruitment was feasible, the target sample size was increased to 175 case-control pairs, allowing the detection of factors associated with odds ratios of 1.9–2.1. Field work was conducted during two periods of time, February 9–16 and November 8–22, 2007 (before and after the rainy season). The same field workers collected the data during the two field trips, using the same questionnaires. A comparison of the data from the two periods of time demonstrated that the participants were comparable in age and gender distribution, and separate analysis of the two datasets yielded comparable epidemiologic findings. Therefore, only the aggregate data are presented here.

Data were single-entered in a database designed by a CDC data manager with internal quality control checks. All questionnaires were reviewed in the field, and the database and questionnaires were compared by two independent observers. Analysis was conducted in SAS 9.1 (SAS Institute Inc, Cary, NC) and Stata 10 (StataCorp LP, College Station, TX). Case-control data were analyzed using univariate and step-wise multivariable conditional logistic regression with Wald 95% confidence limits, to account for the matched design. The Kruskal-Wallis test was used for comparison of continuous variables. Co-linearity was assessed using Spearman correlation coefficients. Variables with \(P < 0.10 \) in the univariate analyses were tested in multivariable models; interaction between variables was tested using interaction terms. Case-control pairs with missing data for specific variables were excluded from analyses that included those variables.

Canine infection survey. During the February field work, dogs were sampled in study villages in 3 of the 6 kebeles. The villages were chosen for logistic reasons, because the human case-control study was being conducted in those sites at the time that the veterinary team was in the field. Owners were requested to bring their dogs to a central location in the village; dogs were restrained by the owners while sampling was carried out. Peripheral blood (0.6 mL) was collected in EDTA from the jugular vein, and bone marrow aspiration (0.2 mL) was performed at the junction of the rib and costal cartilage. Blood samples were centrifuged within 6 hours of collection, plasma and cellular portions separated, and stored at 4°C until serologic testing, and polymerase chain reaction (PCR) were carried out in Spain. Bone marrow aspirates were immediately placed in NET 10 buffer (NaCl 10 mM, EDTA 10 mM and Tris–HCl pH 8.0, 10 mM) in the field; an aliquot of each specimen was inoculated into Novy-MacNeal-Nicolle (NNN) culture medium within 6 hours of collection and maintained at 27°C for 4 weeks. Subcultures were performed weekly.

Whole blood was tested immediately using the rK39 Kala-azar Detect rapid test (InBios International, Seattle, WA) following the manufacturer’s specifications. The rapid test used to test dogs was the human format, which employs a non-specific Protein A that also recognizes canine IgG. Plasma specimens were transported to the laboratory of the National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain, where they were tested by immunofluorescent antibody test (IFAT), and enzyme-linked immunosorbent assays (ELISAs) using two different antigens. The IFAT followed standard methods, using *Leishmania infantum* MON-1 (reference strain MHOM/FR/78/LEM-75) promastigotes, rabbit anti-dog IgG (H+L) conjugated with fluorescein isothiocyanate (ICN Plaza, Costa Mesa, CA). The positive cut-off was set at 1/80 based on the internationally accepted IFAT cut-off value.7,9

For the first ELISA, microtiter plates (Nunc Maxisorp, Thermo Fisher Scientific, Roskilde, Denmark) were coated with 1 µg per well soluble *L. infantum* MON-1 antigen (reference strain MHOM/FR/78/LEM-75).10 Study sera were diluted 1/100 and tested in duplicate; positive and negative controls were included on each plate. The presence of antibodies was detected by horseradish peroxidase-conjugated dog IgG heavy chain (Bethyl Laboratories, Inc, Montgomery, TX). The positive cut-off was set at optical density (OD) = 0.660 at 405 nm (the mean of the OD values plus 3 standard deviations from 30 healthy control dogs from the study site). The second ELISA used the same technique, but substituted 50 ng of rK39 antigen per well.11 The positive cut-off was set at OD = 0.280 at 405 nm (the mean of the OD values plus 3 standard deviations from 30 healthy control dogs from the study site shown to be uninfected by the other diagnostic methods used).

For the molecular assays, 100 µL of peripheral blood or bone marrow aspirate was mixed with 300 µL NET 10 and 40 µL 10% sodium dodecyl sulphate (SDS), incubated with Proteinase K for 1 hour at 70°C, and subjected to a classic phenol-chloroform extraction and ethanol precipitation. To determine the presence of *Leishmania* DNA, 10 µL of the extracted material was processed following the nested PCR technique developed by Cruz and others.12 To identify the *Leishmania* species, sequence analysis of the LnPCR products (small subunit ribosomal [SSUrRNA] region) was performed.12

RESULTS

A total of 171 case-control pairs were interviewed (Table 1). They came from 3 kebeles in Fogera and 3 in Libo Kemkem; their geographic origins reflected the predominant distribution of VL cases in 2006. The mean age of controls was 1.5 years older than cases; other demographic characteristics were comparable among cases and controls. In univariate conditional logistic regression analyses, dog ownership, keeping cattle inside the house at night, report of indoor insecticide spraying, and increasing family size were associated with
this factor did not reach statistical significance. Ownership of a treated bed net appeared to lower risk, but only 21 participants had 2 or more dogs. The odds ratio was 2.46 (95% confidence interval [CI], 1.5–4.0) for those having one dog, and 2.88 (95% CI, 1.0–8.2) for those with two or more dogs, compared with the risk for those without dogs; however, only 21 participants had 2 or more dogs. Ownership of a treated bed net appeared to lower risk, but this factor did not reach statistical significance.

In multivariable conditional logistic regression models, dog ownership, sleeping under an acacia tree during the day, and habitually sleeping outside at night were associated with significantly increased risk (Model 1, Table 3). When the variable “number of family members” was included as a predictor in the multivariable model, the variable “habitually sleeps outside” no longer demonstrated a significant association with risk (Model 2, Table 3). Further analysis revealed a possible interaction between these two variables, although the interaction term failed to reach statistical significance (P = 0.19). However, the 33 case-control pairs missing family size data showed much stronger association between sleeping outside and VL risk than pairs with family size data.

The canine serosurvey included 186 dogs from seven of the same villages in which case-control participants lived. All sampled dogs were adults, with reported ages between 10 months and 12 years; 104 (55.9%) were male, and 44 (23.7%) came from houses with at least one reported human case of visceral leishmaniasis. All dogs underwent physical examination; none had signs of VL. All dogs had peripheral blood collected; bone marrow aspirates were obtained from 178 (95.7%) dogs. Specimens from 7 (3.8%) dogs were positive by IFAT and both ELISA assays; 5 of these were positive by rK39 rapid test in the field. An additional 13 (7.0%) specimens were positive by IFAT at the cut-off value of 1/80, but negative or borderline by the ELISA assays. None of the cultures yielded parasite; 33 (23%) had bacterial contamination. None of the peripheral blood specimens was positive by PCR, but 5 (2.8%) bone marrow aspirates yielded DNA; sequence analysis of the SSU rRNA region demonstrated that all belonged to the *Leishmania donovani* complex. Of the 5 dogs with PCR-positive bone marrow aspirates, 3 were seropositive and 2 seronegative.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, gender, and geographic distribution of 171 case-control pairs, Amhara Region, Ethiopia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Cases</th>
<th>Controls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Cases</td>
<td>Controls</td>
<td>P value</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>21.3</td>
<td>22.8</td>
<td>0.010</td>
</tr>
<tr>
<td>Median</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.5–65</td>
<td>0.5–77</td>
<td></td>
</tr>
<tr>
<td>Among males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>22.6</td>
<td>24.0</td>
<td>0.041</td>
</tr>
<tr>
<td>Median</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>3–65</td>
<td>3–77</td>
<td></td>
</tr>
<tr>
<td>Among females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>17.6</td>
<td>19.2</td>
<td>0.108</td>
</tr>
<tr>
<td>Median</td>
<td>15</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.5–55</td>
<td>0.5–60</td>
<td></td>
</tr>
<tr>
<td>Kebele (District) of residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addis Beta Cristian (Fogera)</td>
<td>4 (2%)</td>
<td>4 (2%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Dibasisat (Fogera)</td>
<td>37 (22%)</td>
<td>37 (22%)</td>
<td></td>
</tr>
<tr>
<td>Rib Gebriel (Fogera)</td>
<td>62 (36%)</td>
<td>62 (36%)</td>
<td></td>
</tr>
<tr>
<td>Estifanos (Libo)</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>Shamo (Libo)</td>
<td>44 (26%)</td>
<td>44 (26%)</td>
<td></td>
</tr>
<tr>
<td>Shina (Libo)</td>
<td>23 (13%)</td>
<td>23 (13%)</td>
<td></td>
</tr>
</tbody>
</table>

significantly higher risk of VL (Table 2). Habitually sleeping outside at night and daytime naps under an acacia tree were both associated with significantly increased risk of VL. The odds ratio was 2.46 (95% confidence interval [CI], 1.5–4.0) for those having one dog, and 2.88 (95% CI, 1.0–8.2) for those with two or more dogs, compared with the risk for those without dogs; however, only 21 participants had 2 or more dogs. Ownership of a treated bed net appeared to lower risk, but this factor did not reach statistical significance.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors for visceral leishmaniasis in Amhara, Ethiopia, based on univariate conditional logistic regression models of data from 171 case-control pairs*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household level variables</th>
<th>Cases</th>
<th>Controls</th>
<th>Matched odds ratio</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Cases</td>
<td>Cases</td>
<td>Controls</td>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>Owns dog</td>
<td>101</td>
<td>59.1</td>
<td>64</td>
<td>37.4</td>
<td>2.61</td>
</tr>
<tr>
<td>Has dog that sleeps in or near house</td>
<td>46</td>
<td>27.2</td>
<td>25</td>
<td>14.6</td>
<td>2.24</td>
</tr>
<tr>
<td>Owns cattle (cow, bull, calf)</td>
<td>153</td>
<td>90.0</td>
<td>150</td>
<td>87.7</td>
<td>1.31</td>
</tr>
<tr>
<td>Cattle stay in house at night (dry season)</td>
<td>9</td>
<td>5.3</td>
<td>3</td>
<td>1.8</td>
<td>4.00</td>
</tr>
<tr>
<td>Cattle stay in house at night (wet season)</td>
<td>90</td>
<td>52.9</td>
<td>75</td>
<td>44.4</td>
<td>1.38</td>
</tr>
<tr>
<td>Owns donkey</td>
<td>55</td>
<td>32.4</td>
<td>44</td>
<td>25.9</td>
<td>1.37</td>
</tr>
<tr>
<td>Owns goats</td>
<td>60</td>
<td>35.5</td>
<td>59</td>
<td>35.3</td>
<td>1.03</td>
</tr>
<tr>
<td>Owns radio</td>
<td>28</td>
<td>16.4</td>
<td>22</td>
<td>13.0</td>
<td>1.32</td>
</tr>
<tr>
<td>Has latrine</td>
<td>26</td>
<td>15.2</td>
<td>31</td>
<td>18.1</td>
<td>0.71</td>
</tr>
<tr>
<td>Had bed net before case kala-azar onset</td>
<td>37</td>
<td>22.7</td>
<td>46</td>
<td>28.2</td>
<td>0.47</td>
</tr>
<tr>
<td>House reported to have been sprayed</td>
<td>60</td>
<td>35.3</td>
<td>50</td>
<td>29.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Earthen walls</td>
<td>148</td>
<td>86.6</td>
<td>154</td>
<td>90.6</td>
<td>0.53</td>
</tr>
<tr>
<td>Thatch roof</td>
<td>118</td>
<td>69.4</td>
<td>112</td>
<td>66.7</td>
<td>1.12</td>
</tr>
<tr>
<td>Earthen floor</td>
<td>170</td>
<td>100.0</td>
<td>169</td>
<td>99.4</td>
<td>undefined</td>
</tr>
<tr>
<td>Owns ≥ 4 hectares of land</td>
<td>65</td>
<td>38.0</td>
<td>56</td>
<td>32.8</td>
<td>1.29</td>
</tr>
<tr>
<td>Monthly expenditure per person < 40 birr†</td>
<td>67</td>
<td>51.9</td>
<td>65</td>
<td>49.6</td>
<td>0.92</td>
</tr>
<tr>
<td>Household head can write his name</td>
<td>91</td>
<td>53.2</td>
<td>83</td>
<td>48.8</td>
<td>1.17</td>
</tr>
<tr>
<td>Has latrine</td>
<td>72</td>
<td>52.2</td>
<td>39</td>
<td>28.3</td>
<td>3.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual behaviors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever sleeps outside the house</td>
<td>114</td>
<td>67.5</td>
<td>99</td>
</tr>
<tr>
<td>Usually sleeps outside house</td>
<td>83</td>
<td>48.5</td>
<td>58</td>
</tr>
<tr>
<td>Usually sleeps on ground near cattle</td>
<td>55</td>
<td>33.7</td>
<td>34</td>
</tr>
<tr>
<td>Ever sleeps under acacia at night</td>
<td>25</td>
<td>14.8</td>
<td>12</td>
</tr>
<tr>
<td>Ever sleeps under acacia during day</td>
<td>99</td>
<td>59.3</td>
<td>81</td>
</tr>
<tr>
<td>In Metema/Humera before illness onset</td>
<td>16</td>
<td>9.4</td>
<td>11</td>
</tr>
</tbody>
</table>

* Number and percentage for each risk factor provided for reference only.
† Data missing for 41 pairs.
‡ Data missing for 33 pairs.

The canine serosurvey included 186 dogs from seven of the same villages in which case-control participants lived. All sampled dogs were adults, with reported ages between 10 months and 12 years; 104 (55.9%) were male, and 44 (23.7%) came from houses with at least one reported human case of visceral leishmaniasis. All dogs underwent physical examination; none had signs of VL. All dogs had peripheral blood collected; bone marrow aspirates were obtained from 178 (95.7%) dogs. Specimens from 7 (3.8%) dogs were positive by IFAT and both ELISA assays; 5 of these were positive by rK39 rapid test in the field. An additional 13 (7.0%) specimens were positive by IFAT at the cut-off value of 1/80, but negative or borderline by the ELISA assays. None of the cultures yielded parasite; 33 (23%) had bacterial contamination. None of the peripheral blood specimens was positive by PCR, but 5 (2.8%) bone marrow aspirates yielded DNA; sequence analysis of the SSU rRNA region demonstrated that all belonged to the *Leishmania donovani* complex. Of the 5 dogs with PCR-positive bone marrow aspirates, 3 were seropositive and 2 seronegative.
The disease, and termite mounds are thought to provide rest
among settings. 16–18 Note that the reservoir remains undetermined, and probably varies
between the presence of acacia trees and

Table 3
Multivariable conditional logistic regression models of risk factors for visceral leishmaniasis in Amhara, Ethiopia

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds ratio</th>
<th>95% confidence intervals</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owns a dog</td>
<td>2.28</td>
<td>1.4–3.8</td>
<td>0.002</td>
</tr>
<tr>
<td>Sleeps under an acacia tree during the day</td>
<td>2.24</td>
<td>1.2–4.3</td>
<td>0.03</td>
</tr>
<tr>
<td>Usually sleeps outside at night</td>
<td>2.27</td>
<td>1.1–4.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owns a dog</td>
<td>2.76</td>
<td>1.5–5.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Sleeps under an acacia tree during the day</td>
<td>2.65</td>
<td>1.2–6.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Family size (each additional member)*</td>
<td>1.27</td>
<td>1.1–1.5</td>
<td>0.006</td>
</tr>
</tbody>
</table>

* Data missing for 33 case-control pairs.

DISCUSSION

The epidemiology of VL in the Horn of Africa is com-
plicated, and a number of key questions remain unanswered. At
least two distinctive ecologic settings have been described,
the endemic region spanning eastern Sudan and northwestern
Ethiopia, in which the vector Phlebotomus orientalis is
found in association with black cotton-clay soils and acacia forests,13 and foci in southern Ethiopia, Kenya, and Uganda
where Phlebotomus martini and Phlebotomus celiae transmit
the disease, and termite mounds are thought to provide rest-
ning and possibly breeding sites for sandflies.14,15 Transmission
appears to include both anthropoatomic and zoonotic compo-
nents; the relative importance of animal versus human infec-
tion reservoir remains undetermined, and probably varies
among settings.16–18

The area most affected by this epidemic differs from both
of the classic ecologic settings. Libo and Foger districts are
located at an altitude of 2,000 meters, are substantially cooler,
and have different vegetation from the lowland Sudan border
focus. The likely vector is still P. orientalis, though possibly a
distinct higher altitude sub-population.19 The affected villages
are settled highland agricultural communities, but the resi-
dents live in precarious economic conditions, prompting many
adult men to seek seasonal employment on the border with
Sudan, where sesame and sorghum fields absorb large num-
bers of migrant workers. In our 2005 rapid assessment data,
10% of all adult men reported having worked in the border
areas, the same areas where intense VL transmission is known
to occur. Moreover, young men who had worked in Humera
and Metema were more likely to be leishmanin skin test (LST)
positive (73%) than the ones who had never traveled to those
demic areas (48%), although this difference did not reach
statistical significance.5 The initiating event behind the high-
land epidemic is thought to be introduction of the parasite by
returning migrant workers from these areas.

Our risk factor analysis supports a complex view of the
transmission dynamics. We identified infected dogs during
both the 2005 and 2007 investigations, and the strong associ-
aton of dog ownership, with a suggestion of a dose-response
relationship, supports a role for dogs in the transmission cycle.
However, the prevalence of infection among surveyed dogs in
the outbreak villages was only 10.8% by IFAT, 3.8% by ELISA,
and 2.8% by PCR. The finding that some PCR-positive dogs
were seronegative and vice versa is consistent with earlier
observations.20,21 Nevertheless, the low canine infection preva-
ience came as a surprise. In established zoonotic cycles, such
as those in Brazil and southern Europe, reported canine infec-
tion rates are as high as 35–80%, 22–24 In an endemic village in
eastern Sudan, 43–74% of dogs were seropositive by IFAT.18
The low prevalence seen in our data may reflect high mortality
among dogs infected early in the epidemic; anecdotally, sev-
eral families reported that canine deaths from illness preceded
human VL cases in their households. In Brazil, high canine
seroprevalence preceded the human epidemic by several
years.25 Our case-control study was conducted after the peak
of the epidemic and may simply have been too late to pick
up many canine infections. Alternatively, it may indicate that
humans are the main infection reservoir in this site. An impor-
tant role for anthropoatomic transmission has been proposed in
several studies from sites classically considered zoonotic.23,26

Sleeping outside may place people at risk of sand fly expo-
sure, and in proximity to infected dogs acting as guards on
cattle herds. However, the risk associated with keeping cattle
indoors and the trend toward protection for net ownership sug-
ests that some transmission may also occur inside the house.
Sand flies disturbed in daytime resting sites, when people nap
under acacia trees, may also transmit the disease. A larger fam-
ily size may appear as a risk factor based on attraction of sand
flies by greater biomass27; however, the data for this variable
were problematic: the data were missing for nearly 20% of our
case-control pairs, and there appeared to be an interaction with
other key variables. We have no evidence of a systematic
error in the collection of data for this variable, and believe that
this effect was a result of chance. In any case, data for factors
more easily modified in the short term are more useful for the
design of preventive interventions.

Published VL risk factor data for the Horn of Africa are
sparse.16,28,29 In an investigation of an outbreak in a community
in eastern Sudan, a large proportion of villagers appeared to
have been infected over a 4-year period.16 Risk factors for VL
included ownership of dogs and cattle, younger age, and male
gender, whereas the presence of a neem tree was protective.
Ethnicity appeared to be another important predictor of risk.30
In a case-control study conducted in southern Ethiopia, having
unplastered walls, keeping animals inside the human dwelling,
proximity to termite hills, and poor antecedent nutritional sta-
tus increased risk of VL.30,31 A case-control study conducted
in a region on the border of northwestern Kenya and eastern
Uganda demonstrated a significant increase in VL risk associ-
ated with lower socioeconomic status and insecticide applica-
tion to cattle, and a protective effect associated with sleeping
close to animals, ownership of a bed net, and knowledge of VL
symptoms.32 The authors hypothesized that cattle may provide
zooprophylaxis, and that application of insecticide to cattle
could cause sand flies to increase their feeding on humans. A
study in Kenya analyzed factors associated with leishmanial
infection as measured by serology; this analysis demonstrated
significant spatial clustering, but failed to show consistent risk
factors for infection.29 Only the study in Sudan was conducted
in an area where the vector is P. orientalis; in southern Ethiopia,
Kenya, and Uganda, P. martini and P. celiae are the presumed
vectors. Other studies from Sudan demonstrate an association
between the presence of acacia trees and P. orientalis,21 con-
sistent with our finding of risk associated with daytime naps
under acacia trees. We could not address clustering of disease
or infection in the case-control analysis, but our earlier LST
survey demonstrated strong clustering at the village level. Our current data suggest that sleeping in proximity to cattle increased rather than decreased risk, but we were unable to examine spatial proximity and these results may simply reflect the effect of sleeping outside.

The risk factor study had a number of limitations because of logistical constraints. For example, the retrospective design was incapable of examining factors, such as nutritional status, which affect risk of progression from infection to kala-azar. Controls were not tested for asymptomatic leishmanial infection. However, the presence of undetected infection in a proportion of controls would have the effect of biasing toward the null hypothesis, and making associations appear weaker; for this reason, we do not believe this limitation invalidates our findings.

Our data have several implications for the design of a control program. On the basis of the risk factor analysis, the dog appears to play an important role in the transmission cycle, but the canine survey data decrease the certainty of this assumption. In any case, canine leishmaniasis control is widely recognized as challenging in Brazil, a setting with substantially more infrastructure and resources than highland villages in Ethiopia. Novel approaches, such as topical insecticide application or impregnated dog collars, have been suggested as potentially more effective methods. Our data suggest that insecticide-treated nets could have promise as a preventive intervention, but would likely protect only a portion of those at risk. If the use of nets is not feasible in the conditions under which men and boys sleep outside, innovative solutions must be sought for these villagers. Further research on the vectors, the circulating parasite strains, the role of the dog in the transmission cycle, and the effect of candidate interventions will be essential before drawing final conclusions as to the best combination of control measures.

Received October 22, 2008. Accepted for publication January 30, 2009.

Financial support: This assessment was made possible through the help of the Ministry of Health and Regional Health Bureau authorities, the WHO representative and the Director of Addis Zemen Health Center. We also thank all the staff of MSF-Greece for their collaboration, infrastructure, and many other kinds of help. This and other VL initiatives in the region are supported by the Agencia Española de Cooperación Internacional para el Desarrollo (AECID).

REFERENCES

