SHORT REPORT: LACK OF PREDICTION OF AMODIAQUINE EFFICACY IN TREATING \textit{PLASMODIUM FALCIPARUM} MALARIA BY \textit{IN VITRO} TESTS

AGNÉS AUBOY, JUSTICE MAYOMBO, ANNICK KEUNDJIAN, MOHAMED BAKARY, JACQUES LE BRAS, AND PHILIPPE DELORON

Centre International de Recherches Médicales de Franceville, Unité de Parasitologie Médicale, Franceville, Gabon; Unité de Parasitologie, Institut de Médecine Tropicale du Service de Santé des Armées, le Pharo, Marseille Armées, France; Hôpital de Bakoumba, Bakoumba, Gabon; Hôpital Bichat-Claude Bernard, Laboratoire de Parasitologie, Paris, France; Institut de Recherche pour le Développement, Unité de Recherche 010 Mother and Child Health in the Tropics, Paris, France

Abstract. Amodiaquine (AQ) is currently a major candidate for new antimalarial combinations, although \textit{in vivo} and \textit{in vitro} tests have been rarely simultaneously investigated. The efficacy of AQ was assessed at the dose of 30 mg/kg in treating \textit{Plasmodium falciparum} malaria attacks in 74 children from southeast Gabon, and the \textit{in vitro} activity of monodesethylamodiaquine (MdAQ), the main metabolite of AQ, was measured against \textit{P. falciparum} parasites isolated from these children. Treatment failures were observed in 40.5% of the children, while 5.4% of the isolates showed \textit{in vitro} resistance to MdAQ. No relationship was observed between \textit{in vivo} and \textit{in vitro} susceptibility. The \textit{in vitro} activities of MdAQ and chloroquine were correlated. The reasons for such disparities between \textit{in vivo} and \textit{in vitro} AQ activities are discussed and the issue of the validity of \textit{in vitro} tests to measure AQ efficacy is raised.

\textit{In vivo} and \textit{in vitro} tests have been in use for more than 30 years for assessing the activity of drugs against \textit{Plasmodium falciparum}.1 Although it has been clearly shown that the \textit{in vitro} activity of chloroquine (CQ) was highly correlated with CQ treatment efficacy,2 this is not the case with numerous other antimalarials. Amodiaquine (AQ) is one of the cost-efficient alternatives to resistant parasites in Africa. However, very few studies investigated AQ activity, simultaneously using both \textit{in vivo} and \textit{in vitro} tests, and the relationship between both methods remains poorly documented. Therefore, we compared results of both methods for AQ and analyzed the reasons for the disparities.

The study was part of a larger treatment efficacy assay in children (<10 years old) comparing sulfadoxine-pyrimethamine versus AQ described elsewhere.3 Briefly, AQ treatment efficacy (30 mg/kg over a three-day period given under supervision, Camoquin6; Parke Davis, Dakar, Senegal) was assessed by the revised World Health Organization (WHO) \textit{in vivo} protocol for areas of intense transmission,2 extended to 28 days of follow-up. A total of 125 children were enrolled in this study, of whom 118 completed the 28-day follow-up. Merozoite surface protein 1 (msp 1) and msp 2 genotyping was used to distinguish recurrence of malaria due to recrudescence from those due to reinfection. \textit{In vivo} responses were classified according to the WHO scheme4 for an adequate clinical and parasitologic response, early treatment failure, late clinical failure, or parasitologic failure. Plasma samples were collected at day 3 for measurement by high-performance liquid chromatography of the levels of AQ and monodesethylamodiaquine (MdAQ), the main metabolite of AQ. The study was reviewed and approved by the Centre International de Recherches Médicales de Franceville ethical committee, and informed consent was obtained from all parents or guardians.

The \textit{in vitro} drug sensitivity assay was assessed by the isotopic microtest with MdAQ and CQ, as described.5 The 50% inhibitory concentration (IC\textsubscript{50}) value was defined as the drug concentration corresponding to 50% of the uptake of 3H-hypoxanthine in the drug-free control wells. The calculation was based on linear regression analysis of the logarithm of concentrations plotted against the percentage of growth inhibition. According to previously published data,2,6 the threshold IC\textsubscript{50} values for CQ and MdAQ \textit{in vitro} resistance were fixed at 100 nM (according to a direct comparison of \textit{in vivo} and \textit{in vitro} data) and 60 nM (more arbitrarily), respectively. Data were analyzed with the Statview software (SAS Institute Inc, Cary, NC).

The median (range) IC\textsubscript{50} values were 146.5 (3–629) nM and 20 (2–257) nM for CQ and MdAQ, respectively. The IC\textsubscript{50} values for 75.6% and 5.4% of the isolates were greater than the threshold of \textit{in vitro} resistance to CQ and MdAQ, respectively. The IC\textsubscript{50} values for both drugs showed a correlation with each other (Figure 1) ($r = 0.45$, $P < 0.0001$, by linear regression analysis). Disparities between \textit{in vivo} and \textit{in vitro} results were observed in 31 of the 74 cases successfully studied by both methods: 29 isolates were susceptible \textit{in vitro} (IC\textsubscript{50} \leq 60 nM) to MdAQ, but led to treatment failures, while 2 of the 4 isolates with \textit{in vitro} resistance to MdAQ led to treatment successes. The role of the factors that may influence treatment outcome was investigated (Table 1). Subjects with \textit{in vivo} failures were younger ($P = 0.04$, by Mann-Whitney U test). Day 3 plasma concentrations of MdAQ, or MdAQ plus AQ did not differ in children in which AQ treatment outcome was a success or a failure. Similarly, these concentrations did not correlate with IC\textsubscript{50} values for CQ or MdAQ.

In this study, 5.4% of the isolates showed \textit{in vivo} resistance to MdAQ, while a treatment failure to AQ occurred in 40.5% of the children. No clear relationship between treatment response and the \textit{in vitro} IC\textsubscript{50} of AQ was detected. Similarly, Brasseur and others7 reported a two-fold higher rate of resistance \textit{in vivo} of AQ. However, the \textit{in vitro} tests were carried out with AQ instead of MdAQ. Conversely, Trenholme and others,8 Ringwald and others,9 and Basco and others10 reported lower treatment failure rates compared with the rate of \textit{in vitro} resistance. In endemic areas, the higher prevalence rate of \textit{in vitro} resistance may be related to the immune response, adding its effect to that of the drug in clearing the parasite infection. Although differences in the methodology of \textit{in vivo} and \textit{in vitro} tests do not allow an accurate comparison of these studies to our results, there was no correlation between resistance \textit{in vivo} and \textit{in vitro} in most of these studies.
The accuracy of the threshold for MdAQ in vitro resistance may be questioned. The threshold for CQ was established 25 years ago2-6 by direct comparison of data from treatment efficacy of the standard therapeutic regimen of CQ and \textit{in vitro} tests results. In the case of MdAQ, as well as most other antimalarial drugs, this threshold was calculated from the mean IC\textsubscript{50} of a number of isolates plus two standard errors.6 These determinations were done in areas where the level and the prevalence rate of AQ resistance were then low. Nevertheless, in our study, MdAQ IC\textsubscript{50} values were similarly low in isolates from both adequate responses and therapeutic failures.

Drug intake before enrollment can modify the outcome of \textit{in vivo} as well as \textit{in vitro} tests results. An inadequate treatment regimen of AQ may also constitute a possible factor of discordance with \textit{in vitro} tests results. An inadequate treatment regimen of AQ may also constitute a possible factor of discordance with \textit{in vitro} tests results. An inadequate treatment regimen of AQ may also constitute a possible factor of discordance with \textit{in vitro} tests results. Amodiaquine was shown to be 1 – 3 times more effective \textit{in vitro} than MdAQ,18,19 suggesting that remaining levels of AQ after metabolism should be considered when measuring blood concentrations of the drug. In our study, the addition of AQ concentrations to MdAQ did not alter the results or improve the \textit{in vivo-in vitro} data agreement. This also suggests that it may be worthwhile to conduct \textit{in vitro} testing not only with either AQ or MdAQ, but also with a mixture of these two drugs.

High-level transmission areas are characterized by large number of infective clones, as we previously showed at the site of this study.3 Such a factor may increase the complexity of \textit{in vitro} tests, and raise questions about their significance. A resistant clone that is poorly represented in the blood may not have a sufficient effect to substantially increase the IC\textsubscript{50}, but may later cause an \textit{in vivo} failure. Furthermore, at the time of

![Figure 1](image-url)
Figure 1. Correlation between \textit{in vitro} responses to monodesethylamodiaquine (MdAQ) and chloroquine (CQ) among 72 Plasmodium falciparum Gabonese isolates from Bakoumba, Gabon, 2000. Resistance thresholds are shown at 60 nM for MdAQ and 100 nM for CQ. Two samples, one amodiaquine (AQ) resistant and one AQ sensitive, were not studied with CQ. IC\textsubscript{50} = 50% inhibitory concentration.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria attack characteristics, \textit{in vitro} activity of monodesethylamodiaquine (MdAQ) and chloroquine (CQ), and post-treatment plasma drug levels according to amodiaquine (AQ) treatment outcome Bakoumba, Gabon, 2000*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response to AQ treatment (%)</th>
<th>Success (n = 44)</th>
<th>Failure (n = 30)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{In vitro} MdAQ activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance (%) (\text{IC}_{50})</td>
<td>2.1 (4.5)</td>
<td>2.6 (6.7)</td>
<td>0.99†</td>
</tr>
<tr>
<td>\text{IC}_{50} \text{MdAQ} ± SE (nM/L)</td>
<td>29.0 ± 5.8</td>
<td>24.6 ± 3.5</td>
<td>0.80‡</td>
</tr>
<tr>
<td>\textit{In vitro} CQ activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance (%) (\text{IC}_{50})</td>
<td>33.3 (75.0)</td>
<td>21.8 (75.0)</td>
<td>0.99†</td>
</tr>
<tr>
<td>\text{IC}_{50} \text{CQ} ± SE (nM/L)</td>
<td>181.0 ± 18.4</td>
<td>172.9 ± 23.5</td>
<td>0.81‡</td>
</tr>
<tr>
<td>Day 3 plasma concentrations (± SE) MdAQ (ng/ml)</td>
<td>145.4 ± 17.3</td>
<td>110.6 ± 14.1</td>
<td>0.10‡</td>
</tr>
<tr>
<td>MdAQ plus AQ</td>
<td>149.1 ± 17.2</td>
<td>113.3 ± 14.2</td>
<td>0.53‡</td>
</tr>
<tr>
<td>Mean ± SE age (months)</td>
<td>52.5 ± 3.7</td>
<td>41.1 ± 4.4</td>
<td>0.04‡</td>
</tr>
<tr>
<td>Day 0 parasite density (µL of blood)</td>
<td>55.336 (23,832–86,840)</td>
<td>59.053 (22,517–95,589)</td>
<td>0.73‡</td>
</tr>
<tr>
<td>Mean ± SE day 0 axillary temperature (°C)</td>
<td>38.1 ± 0.1</td>
<td>38.2 ± 0.1</td>
<td>0.94‡</td>
</tr>
</tbody>
</table>

*IC\textsubscript{50} = 50% inhibitory concentration.
† By chi-square test.
‡ By Kolmogorov-Smirnov test.

* By Mann-Whitney U test.
sampling, selected parasites may be sequestered and absent from the peripheral circulation.21,22

New strategies are urgently needed to address the question of the waning lifetime of antimalarial treatments. Methods to evaluate treatment efficacy are of utmost importance because they help to develop treatment recommendations. Our data demonstrate that treatment failure may not necessarily be due to resistance, and that in the case of AQ and probably many other antimalarials,\textit{in vitro} testing cannot replace \textit{in vivo} testing and should instead be used as an early warning tool. Our study raises the problem of the validity of \textit{in vitro} tests to measure AQ efficacy, and stresses the necessity to validate an \textit{in vitro} threshold of resistance and to validate its predictive value.

Received January 23, 2004. Accepted for publication April 9, 2004.

Acknowledgments: We are grateful to the children who participated in the study, as well as to their mothers and guardians. We also thank J. Bourgeais (Le Site de la Société d’Exploitation du Parc de la Lékédi) for logistical support in Bakoumba.

Financial support: This work was supported by the French Ministry of Research (VIHPAL grant) and by the Fondation pour la Recherche Médicale. Agnes Aubouy was the recipient of a fellowship from the French Ministry of Research.

Reprint requests: Philippe Deloron, Institut de Recherche pour le Développement, Unité de Recherche 010, Faculté de Pharmacie, 4 Avenue de l’Observatoire, 75006 Paris, France, Telephone: 33-1-53-73-96-22, Fax: 33-1-53-73-96-17, E-mail: Philippe.Deloron@ird.fr.

REFERENCES