A GLOBAL INDEX REPRESENTING THE STABILITY OF MALARIA TRANSMISSION

ANTHONY KISZEWSKI, ANDREW MELLINGER, ANDREW SPIELMAN, PIA MALANEY, SONIA EHRHICH SACHS,
AND JEFFREY SACHS

Harvard School of Public Health, Boston, Massachusetts; Center for International Development, Harvard University, Cambridge, Massachusetts; The Earth Institute at Columbia University, New York, New York

Abstract. To relate stability of malaria transmission to biologic characteristics of vector mosquitoes throughout the world, we derived an index representing the contribution of regionally dominant vector mosquitoes to the force of transmission. This construct incorporated published estimates describing the proportion of blood meals taken from human hosts, daily survival of the vector, and duration of the transmission season and of extrinsic incubation. The result of the calculation was displayed globally on a 0.5° grid. We found that these biologic characteristics of diverse vector mosquitoes interact with climate to explain much of the regional variation in the intensity of transmission. Due to the superior capacity of many tropical mosquitoes as vectors of malaria, particularly those in sub-Saharan Africa, antimalaria interventions conducted in the tropics face greater challenges than were faced by formerly endemic nations in more temperate climates.

INTRODUCTION

Maps representing the world-wide burden of malaria generally reflect the reported distribution of clinical episodes of this disease. However, the scope and accuracy of these reports are limited by the extent of health care coverage, the efficacy of surveillance and reporting systems, and other factors that have little to do with the underlying force of malaria transmission. Schemes using the mortality rates of garrisoned British soldiers in the early 18th century offer novel insights into this disease. However, the scope and accuracy of these reports generally reflect the reported distribution of clinical episodes of malaria, such as the schemes developed by the “Mapping Malaria Risk in Africa” (MARA) collaboration, are less affected by institutional limitations and are based on more objective ecologic bases. Such maps derive from a “climatic suitability index” that represents the climatic limits on vector distribution and parasite development as well as the presence of a sufficiently long breeding period for the vector population. These variables relate well to depictions in clinically based maps, but do not consider all of the factors intrinsic to vector mosquitoes that affect transmission intensity at a given level of abundance. Temperature, for example, is used only to define the limits and relative suitability of the region as a transmission site. Other maps attempt to bridge these clinically and environmentally based approaches on a regional scale by considering statistical correlations between malaria incidence and environmental characteristics. Such representations of malaria risk improve the resolution of spatial depictions of transmission intensity, but do not consider directly the properties intrinsic to vector mosquitoes that contribute most powerfully to vectorial capacity, such as focused feeding behavior and longevity. Available maps depicting the relative intensity of malaria transmission generally are constructed from surrogates or filtered outcomes that remain one or more steps removed from the forces that govern the stability of malaria transmission.

Malaria is said to be stable if it is transmitted throughout the year by long-lived, anthropophilic vector anopheline mosquitoes. In his seminal 1952 malariologic analysis, Macdonald used α/μ to represent an index of stability based on the two most important components of his vectorial capacity equa-
has been endemic. Only the smallest island nations and protectorates were excluded from these analyses. The level of resolution used also precluded detailed consideration of individual cities. A regionally “dominant” vector was defined as an anopheline that is demonstrably vector competent, frequently contains sporozoites, tends to feed on human hosts, and is more abundant than other anophelines. These considerations were applied independently to each month of the year to permit “swapping” of dominant vectors between seasons within a region. Regions were subdivided when appropriate to permit more than one malaria vector in a country to be designated as dominant.

To describe the seasonal distributions of each regionally dominant malaria vector for each of the 12 months of the year, we determined whether such a mosquito was locally active, using the same body of literature that was used to estimate vector bionomics. Sources of information were favored in which mosquito abundance was monitored systematically by means of landing counts, resting counts, light traps, flit catches, or other such objective methods. Certain of these sources described seasonal abundance in weekly, biweekly, or monthly observations. When no entomologic information was available, we relied on the recorded seasonality of malaria incidence. We consulted as many such reports as could be found and assigned values based on a “majority” of the available records. When no reliable information was available for a site, records of the local climate were interpolated to indicate whether a particular vector may be present there in a given month. The algorithm for decision-making in such anomalous cases varied according to the vector species. For those vectors that breed mainly in temporary water, we used a minimum precipitation threshold of 10 mm per month, lagged one month, to judge when the vector would be present there. To characterize the dominant vector in each region, we selected those that were longest lived and that fed most frequently on human hosts (Table 1). Dominant malaria vectors were designated in each endemic or potentially endemic region (Figure 1). The 260 regions that we identified are in the northern latitudes. Maps representing the extrinsic incubation period of P. falciparum were based on the 1901–1990 mean monthly temperature records of the International Panel on Climate Change. Human population data were derived from the detailed Gridded Population of the World data set. Data calculated for each month are represented in 0.5° cells.

Our analysis of the distribution of dominant vectors of malaria, therefore, was species specific and based on published reports of anopheline bionomics, vegetation maps (defining suitable, unsuitable habitat), altitude (maxima or minima), monthly precipitation thresholds (minima), and monthly temperature thresholds (minima, isotherms, length of frost-free season).

RESULTS

Selection of regionally dominant vector Anopheles. We first identified the countries in which malaria is endemic or has been endemic and enumerated the vector Anopheles endemic to the site. Certain of these countries were divided into as many as four regions to represent the diversity of habitats there. To characterize the dominant vector in each region, we selected those that were longest lived and that fed most frequently on human hosts (Table 1). Dominant malaria vectors were designated in each endemic or potentially endemic region (Figure 1). The 260 regions that we identified are infected by a total of 34 dominant vector Anopheles.

Derivation of a vector stability index. To depict the relative stability of malaria transmission for each of these potentially malaria-endemic regions, we derived an index that expressed those factors that most powerfully and perennially influence the intensity of malaria transmission. We used, therefore, a subset of the vectorial capacity equation without terms for mosquito abundance or vector competence. We did not consider a recovery rate for infected people. To calculate the duration of the extrinsic incubation period “E,” the index (1) was calculated for each month, and biting activity was designated based on the average monthly temperature and Moshkovsky’s degree-day-based formulae (2,3).

\[
\sum_{m=1}^{12} a_i^{12} p_{i,m} E / \ln(p_{i,m})
\]

where \(m = \text{month (1–12)}\), \(i = \text{identity of dominant vector, } a = \text{proportion biting people (0–1), } p = \text{daily survival rate (0–1)}, \text{and } E = \text{length of extrinsic incubation period in days.}
where $E = 111/T-16$ for *P. falciparum* and $E = 105/T-14.5$ for *P. vivax*.

Parameterization of the stability index. We first applied our vector stability index to each of the regions designated as infested by one or another of the 34 *Anopheles* vectors that we considered to be dominant. Criteria used to estimate a included field-derived estimates of the human biting index (hbi) based on mosquitoes captured in various locations and whose blood meals were identified by precipitin, en-zyme-linked immunosorbent assay, or gel diffusion methods. Data were excluded if they derived from con-trived experiments in which human or other hosts were ex-posed in a common space. In the case of mixed blood meals, any mosquito yielding evidence of ingested human blood was considered to be a human feeder in the calculation of a. Criteria for estimating daily survival rate (p) in the peer-reviewed literature variously used mark-release recapture tracking of the daily rate of decrease in recaptures, the ratio of Stage IV to Stage III ovarioles in dissected adults, the rate of increase in infection rate, parous rates, and directly observed mortality in mosquitoes maintained in cages in the laboratory. A common value for a was assigned to each vector species throughout its range. Where the members of a species complex were sympatric and not readily distinguished by habitat (e.g., *Anopheles punctulatus* s.l.), a combined median estimate was used for all members of the taxon. In certain other cases (e.g., *An. fluviatilis* s.l.), in which the habitat preference of the anthropophilic members of the complex (sibling species S) differ from those that are zoophilic (T), the individual members were differentiated. Observations made before species complexes were recognized or before these species could readily be distinguished were excluded unless current information on geography or habitat facilitated such a distinction. This criterion excluded many older observations from parts of Africa where *An. arabiensis* and *An. gambiae* are sympatric and share in malaria transmission. The median hbi value for all 34 vectors was 0.672, ranging from 0.01 to 0.98 (Table 2). These values representing a are varied, but consistent.

Survival estimates for adult anophelines were highly vari-able between studies. The median daily survival value was 0.846, ranging from 0.682 for *An. albimanus* to 0.966 for *An. atroparvus* and *An. quadrimaculatus* (Table 3). Because sur-vival was so infrequently estimated and because the methods of estimation have such disparate biases (e.g., lower mortality from population cages and higher mortality from mark-recapture), the median value of p was applied to all species across their ranges. A coherent value representing the stabil-ity index can thus be applied to each dominant vector anopheline.

Adaptation of the stability index to a fine geographic scale. We then depicted our stability index on a geographic scale finer than that represented by the 260 regions that we designated as malarious or potentially malarious. Toward this end, depictions of seasonality in malaria transmission were refined by applying a 10-mm monthly precipitation threshold with a one-month lag that determined whether index values were calculated for individual 0.5° cells. Temperature data

Figure 1. Global distribution (Robinson projection) of dominant or potentially important malaria vectors.
were applied on a similar scale to non-zero cells when calculating cell-level indices. The resulting cell-based index characterized broad regions and countries much as did the simpler region-based index while providing less abrupt transitions on the fringes of vector distributions, especially in arid zones. This inclusion of a micro-climate parameter in our index bet-
that includes both longevity and human-biting habit. The
anomaly introduced by the longevity parameter appears to
further exacerbates the effect of such aberrations. The results
appear to be most conservative, possibly because mosquitoes
derive more from measurement error, sample size, and incon-
venient longevity estimates. Mark-release recapture methods
have been used to estimate mosquito survival tend to bias compre-
prehensive longevity estimates. Mark-release recapture methods
appear to be most conservative, possibly because mosquitoes
are damaged when they are captured and held prior to re-
lease. Estimates derived from laboratory-reared mosquitoes,
held in population cages, tend to exceed those derived in
other ways, reflecting perhaps the absence of such natural
hazards as predators. These biases are most apparent in the
case of vectors that are represented poorly in the literature.
The diverse methods that have been used to estimate mosquito survival tend to bias compre-
prehensive longevity estimates. Mark-release recapture methods
appear to be most conservative, possibly because mosquitoes
are damaged when they are captured and held prior to re-
lease. Estimates derived from laboratory-reared mosquitoes,
held in population cages, tend to exceed those derived in
other ways, reflecting perhaps the absence of such natural
hazards as predators. These biases are most apparent in the
case of vectors that are represented poorly in the literature.

TABLE 2

Human blood index of each of the regionally dominant anopheline vector mosquitoes

<table>
<thead>
<tr>
<th>Anopheles species</th>
<th>Median human blood index</th>
<th>No. of observations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>albimanus</td>
<td>0.102</td>
<td>16</td>
<td>123–129</td>
</tr>
<tr>
<td>anthropophagus</td>
<td>0.010</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>aqulasis</td>
<td>0.109</td>
<td>3</td>
<td>131–132, 249, 250</td>
</tr>
<tr>
<td>arabiensis</td>
<td>0.871</td>
<td>32</td>
<td>13, 20, 125, 133–150</td>
</tr>
<tr>
<td>atroparvus</td>
<td>0.245</td>
<td>8</td>
<td>151–154, 251</td>
</tr>
<tr>
<td>barbirostris</td>
<td>0.127</td>
<td>9</td>
<td>124, 125, 129, 155–158</td>
</tr>
<tr>
<td>culicifacies</td>
<td>0.052</td>
<td>55</td>
<td>125, 155, 159–172</td>
</tr>
<tr>
<td>darlingi</td>
<td>0.485</td>
<td>2</td>
<td>129, 173</td>
</tr>
<tr>
<td>dirus</td>
<td>0.555</td>
<td>18</td>
<td>124, 125, 174–176</td>
</tr>
<tr>
<td>farauti</td>
<td>0.658</td>
<td>19</td>
<td>124, 125, 129, 174, 177</td>
</tr>
<tr>
<td>flavirostris</td>
<td>0.300</td>
<td>9</td>
<td>125, 129, 174, 176</td>
</tr>
<tr>
<td>flavivialis</td>
<td>0.034</td>
<td>27</td>
<td>58, 124, 125, 129, 155, 167, 169, 178–182</td>
</tr>
<tr>
<td>freeborni</td>
<td>0.019</td>
<td>8</td>
<td>104, 183, 184</td>
</tr>
<tr>
<td>funestus</td>
<td>0.980</td>
<td>30</td>
<td>12, 118, 125, 138, 139, 143, 185–189</td>
</tr>
<tr>
<td>gambiae ss</td>
<td>0.939</td>
<td>36</td>
<td>12, 13, 14, 133, 135, 138, 139, 142, 145, 146, 148, 149, 150, 185, 186, 190–192</td>
</tr>
<tr>
<td>labranchiae</td>
<td>0.151</td>
<td>17</td>
<td>103, 123, 124, 128, 193–195</td>
</tr>
<tr>
<td>maculatus</td>
<td>0.155</td>
<td>10</td>
<td>125, 155, 156, 158, 196–198</td>
</tr>
<tr>
<td>melas</td>
<td>0.690</td>
<td>6</td>
<td>23, 74, 133, 190</td>
</tr>
<tr>
<td>meseae</td>
<td>0.172</td>
<td>14</td>
<td>117, 154, 199, 200, 201–204</td>
</tr>
<tr>
<td>minimus</td>
<td>0.425</td>
<td>12</td>
<td>125, 151, 176, 197, 205–208</td>
</tr>
<tr>
<td>multicolor</td>
<td>0.008</td>
<td>15</td>
<td>62, 124, 125, 209–212</td>
</tr>
<tr>
<td>nuneztovari</td>
<td>0.222</td>
<td>11</td>
<td>30, 46, 49, 50, 213, 214</td>
</tr>
<tr>
<td>pharoahensis</td>
<td>0.520</td>
<td>17</td>
<td>124, 125, 129, 209, 211, 215–220</td>
</tr>
<tr>
<td>pseudopunctipennis</td>
<td>0.477</td>
<td>13</td>
<td>124, 126, 129, 221–223</td>
</tr>
<tr>
<td>pulcherinus</td>
<td>0.062</td>
<td>12</td>
<td>124, 125, 129, 224–227</td>
</tr>
<tr>
<td>punctulatus sl</td>
<td>0.855</td>
<td>7</td>
<td>124, 125, 129, 174, 177</td>
</tr>
<tr>
<td>quadrimaculatus</td>
<td>0.111</td>
<td>27</td>
<td>228–230</td>
</tr>
<tr>
<td>sacharovi</td>
<td>0.087</td>
<td>47</td>
<td>125, 199, 231–241</td>
</tr>
<tr>
<td>sergentii</td>
<td>0.100</td>
<td>18</td>
<td>124, 125, 129, 210, 212</td>
</tr>
<tr>
<td>sinensis</td>
<td>0.018</td>
<td>21</td>
<td>124, 129, 151, 157, 158, 174, 206, 242–245</td>
</tr>
<tr>
<td>stephensi</td>
<td>0.023</td>
<td>37</td>
<td>63, 124, 125, 129, 155, 160, 166, 169, 170, 176, 246</td>
</tr>
<tr>
<td>superpictus</td>
<td>0.093</td>
<td>18</td>
<td>59, 124, 129, 193, 199, 231, 234, 240</td>
</tr>
<tr>
<td>sundaicus</td>
<td>0.611</td>
<td>17</td>
<td>124, 125, 129, 158, 247–248</td>
</tr>
</tbody>
</table>

DISCUSSION

Regional differences in stability. Both the region-based and cell-based versions of our stability index demonstrate that malaria is transmitted far more robustly in sub-Saharan Africa than it is elsewhere in the world. In the savannah regions of west and central Africa that border the Sahel, stability is enhanced by the continuous heat that characterizes the region, the human-biting habit of the autochthonous vector mosquitoes and the presence of a complementary vector (An. funestus) that maintains transmission during the dry season when the density of the wet-season vectors (An. gambiae s.l.) wanes. Transmission is somewhat less stable in Papua New Guinea, Irian Jaya, and the Solomon Islands where particular members of the An. punctulatus complex are almost exclu-
sively anthropophilic but where transmission virtually ceases during the rainy season. Malaria is less stable elsewhere in the tropics and least stable in the more temperate parts of the world. Tropical regions in general appear to face larger obstacles in intervening against malaria, which these indices suggest may be due more to the intrinsic properties of their vectors and the effects of climate than to differences in health systems or anti-malaria interventions. These indices also demonstrate the advantages that once were enjoyed in temperate nations that happened not to be burdened by anthropophilic mosquitoes.

Sources of error and bias. The diverse methods that have been used to estimate mosquito survival tend to bias compre-
prehensive longevity estimates. Mark-release recapture methods appear to be most conservative, possibly because mosquitoes are damaged when they are captured and held prior to release. Estimates derived from laboratory-reared mosquitoes, held in population cages, tend to exceed those derived in other ways, reflecting perhaps the absence of such natural hazards as predators. These biases are most apparent in the case of vectors that are represented poorly in the literature. The disproportionate effect of vector longevity on the index further exacerbates the effect of such aberrations. The results of the version of our index based on feeding habit alone are more consistent with clinical experience than is the index that includes both longevity and human-biting habit. The anomaly introduced by the longevity parameter appears to derive more from measurement error, sample size, and incon-
Rationale for using a single representative vector. In characterizing regional force of transmission, we elected to base our calculations on the single most dominant anopheline species native to a particular place and during a given month. Not all possible vectors were included in the analyses because malaria prevalence rapidly becomes saturated as the entomologic inoculation rate increases.\(^{287}\) The contribution of a single dominant vector captures virtually all of the “signal” that characterizes endemcity in a region, thereby rendering secondary vectors irrelevant. This reasoning is based on the rationale that even subtle differences in human biting behavior and longevity lead to large differences in the force of transmission. These terms contribute powerfully in a nonlinear fashion. For similar reasons, additive weighting by relative abundance is avoided because a weak vector would unrealistically dilute the effect of the strong vector. A cumulative index that sums the contributions of all vectors would, similarly, be misleading.

Definition and contribution of a. Much of the regional variation in the stability of malaria transmission can be explained solely by reference to vector feeding behavior. Although this factor is not the most powerful component of vectorial capacity, it may vary most widely as an intrinsic property of diverse vector species. Feeding preference is strongly influenced by the availability of particular hosts, and certain innate and species-specific properties of the vector affect choice. These behaviors range from complete zoophily to complete anthropophily with a continuum of intervening gradations. Longevity, as a trait, varies more subtly than does blood-feeding habit.

The vectorial capacity term for anthropophilic biting behavior (a) is handled variously in the literature. The original approach\(^7\) divided human biting preference by the length of the gonotrophic cycle in days to derive a term that specified the proportion of the vector mosquito population that actively sought hosts on a given day and likely to feed on human hosts. Various investigators depicted a as the human biting rate. For the purpose of defining this index, however, we dissociate human feeding preference from biting interval because of the relative paucity of information on temperature-gonotrophic relationships for many mosquitoes. However, such temperature relationships are included in the index in the calculation for extrinsic incubation period length. Ideally, both temperature-dependent relationships would be included, thereby enhancing the differentiation between temperate and tropical regions because the current temperature effect would effectively be squared.

The effect of abundance and competence. Our index includes those factors that most powerfully and perennially influence the intensity of malaria transmission. Other vector characteristics, such as abundance and competence, affect transmission less powerfully. Mosquito abundance is also affected by extreme inter-annual and inter-spatial variation that would tend to obscure the innate epidemiologic capacities of different types of mosquitoes. For the dominant vectors specified in our index, competence is less variable, but similarly weak in its influence. Competence often separates into input and output components,\(^7\) the probability that infected mosquitoes pass infection to a reservoir host (b) and the reverse relationship (c). Each of these terms, like abundance, has a linear effect on the force of transmission. Because we chose to ignore the contribution of less competent secondary vectors, the variation in competence between the vectors included in our index is greatly reduced. Our list of dominant vectors, therefore, represents an elite subset of the most competent anophelines capable of transmitting malaria.

The effect of other missing factors on the index. The resolution of our index might be sharpened by including other estimators. In highland and in arid sites, where malaria transmission is seasonal, the infectiousness of the human reservoir population may periodically become reduced. A reservoir competence factor that is adjusted for the duration of such
interruptions would tend to increase the contrast between the index values of temperate regions and those of highly seasonal tropical regions that include sites in which transmission is uninterrupted. Exophilic feeding behavior may also affect the force of transmission. Although difficult to quantify, endophilic vectors contribute more to malaria risk than do those that are exophilic. Incorporation of this property into our index might be useful.

Increasing the resolution of the grid cells to something less than the 0.5° dictated by our climate data would also improve the index. With more finely resolved geographic data, more spatial variability would be included, particularly for smaller countries and islands omitted due to the large size of each grid cell. The influence of focally important vectors such as urban *An. stephensi* and oasis-breeding *An. sergentii* would also be represented more accurately.

Anthropogenic conditions may modify our stability index by influencing the distribution, survival rate, and feeding habits of vectors. Insecticide use, improved house construction, land-use changes, and pollution (such as detergent contamination) would reduce the force of transmission. Anthropogenic changes that increase transmission would include accumulations of puddled ground water and enhanced resting sites. The latter condition can be a powerful determinant because it enhances longevity. Such artificial conditions intermingle in a complex manner and would be difficult to incorporate into our index.

The contribution of the density of the human population to the stability of transmission might also be important because malaria transmission depends on the interaction of humans and mosquito vectors. Weighting by population density might reduce the index in countries where dense human populations inhabit non-malarious regions, such as the highlands of Kenya. In certain other regions, such as the Sahel, where people are compelled to reside where water is available, and thus where transmission is most stable, the index may become amplified. A parameter representing human density would contribute to the specificity of our stability index.

Effect of species complexes. Many of the more broadly distributed anophelines represent complexes of heterogeneous populations. Although our analysis would have benefited from the finest possible resolution of such complexity, certain of the parameters that we used were based on aggregated estimates. In the case of *An. fluviatilis*, for example, the hbi values clustered distinctly around two medians. The standard deviation in this case approaches or surpasses the corresponding mean, suggesting aggregation of heterogeneous populations. In the absence of evidence to the contrary or of a means of applying such evidence to our parameters, we treated such disparate estimates as though they represent values for a single homogeneous population.

Summing up. Our index of malaria stability depicts the regional resiliency of malaria perpetuation. It fills the gap between climatologically based and clinically based indices of transmission by including the most powerful components of vectorial capacity and their differing expression in the various anopheline vectors of malaria. Thus, it explicitly depicts the effects of ambient temperature on the force of transmission of malaria, as expressed through the length of the extrinsic incubation period, and the proportion of the vector population able to survive long enough to become infectious. Therefore, our map synthesizes the interaction of climate with malaria.
pathogens and mosquito vectors more comprehensively than do maps based on climate or clinical incidence alone. Our index of malaria stability provides baselines for comparing regional infectious throughputs in malaria vectors. These indices can help in efforts to design antimalaria interventions and to explore the links between malaria intensity and economic development. One immediate use of the index is as a statistical control in studies of the effects of malaria on economic development. A traditional problem with analyses of the correlation between malaria endemicity and economic development is the tendency of causation to run in both directions: from malaria to poverty and from poverty to malaria. The new index will be useful in measuring the extent of causation running from malaria to poverty because the index can be used as an instrumental variable in regressions of economic growth and income levels on malaria endemicity. The first statistical results of this application underscore the importance of malaria as an important causal factor in chronic impoverishment of holoendemic regions. Global variation in the stability of malaria transmission derives from interactions between climate and the specific biological characteristics of certain, dominant anopheline vectors.

Received February 4, 2003. Accepted for publication October 6, 2003.

Acknowledgments: We are grateful for the assistance of Derek Willis for his diligence in discovering background material for this work.

Financial support: This work was supported in part by a grant from the World Health Organization.

Authors’ addresses: Anthony Kiszewski, Immunology and Infectious Diseases, Harvard School of Public Health, I-109, 665 Huntington Avenue, Boston MA 02115, Telephone: 617-432-4229, Fax: 617-432-1796, E-mail: akisz@hsph.harvard.edu. Andrew Mellinger and Pia Malaney, Center for International Development/Kennedy School of Government, Harvard University, 1 Eliot Street, Cambridge MA 02138, Telephone: 617-496-0113, E-mails: Andrew_Mellinger@ksg.harvard.edu and Pia_Malaney@ksg.harvard.edu. Andrew Spielman, Immunology and Infectious Diseases, Harvard School of Public Health, I-109, 665 Huntington Avenue, Boston MA 02115, Telephone: 617-432-2058, Fax: 617-432-1796, E-mail: aspielma@hsph.harvard.edu. Sonia Ehrlich Sachs and Jeffrey Sachs, The Earth Institute at Columbia University, New York, NY 10115.

REFERENCES

29. Forattini OP, Kakitanl I, Santos RL, Ueno HM, Kobayashi KM,
106. LP DAACb, 1999. Global Land Cover Characteristics 1km Database. These data are distributed by the Land Processes Distributed Active Archive Center located at the U.S. Geological Survey’s EROS Data Center http://edcdaac.usgs.gov.
107. LP DAACA, 1999. HYDRO1k Elevation Derivative Database. These data are distributed by the Land Processes Distributed Active Archive Center located at the U.S. Geological Survey’s EROS Data Center http://edcdaac.usgs.gov.

161. Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT,
Wirtz RA, 1999. Malaria vectors in a traditional dry zone vil-

Dash AP, 1985. Host selection patterns of five mosquito species

Dewit I, Coosemans M, Srikrishnaraj K, Wery M, 1994. Popu-
lational dynamics of anophelines in a malathion treated village
in the intermediate zone of Sri Lanka. *Ann Soc Belg Med Trop*
74: 93–103.

Gunasekaran KP, Sadanandane C, Parida SK, Sahu SS, Patra
annulatus* and *An. culicifacies* in the hill tracts of Koraput
District, Orissa. *Southeast Asian J Trop Med Public Health* 25:
187–195.

feeding patterns of *Anopheles culicifacies* species A and B.

Mahmood F, MacDonald M, 1985. Ecology of malaria transmis-
sion and vectorial capacity of *Anopheles culicifacies* species A

Studies on *Anopheles fluviatilis* and *Anopheles culicifacies* sib-
ing species in relation to malaria in forested hilly and defor-
ested riverine ecosystems in northern Orissa, India. *J Am Mosq
Control Assoc* 16: 199–205.

Reisen WK, Boreham PFL, 1979. Host selection patterns of

Reisen WK, Boreham PFL, 1982. Estimates of vectorial capacity
for *Anopheles culicifacies* and *Anopheles stephensi* in rural

patterns of anophelines from Uttar Pradesh and Gujarat

Russell PF, Rao T, 1942. Observations on the longevity of

Charlwood JD, Alcerim WA, 1989. Capture-recapture studies
with the South American malaria vector *Anopheles darlingii,*

Chow CY, 1970. Bionomics of malaria vectors in the western
Pacific region. *Southeast Asian J Trop Med Public Health* 1:
40–57.

Dutta P, Bhattacharyya DR, Khan SA, Sharma CK, Mahanta J,
1996. Feeding patterns of *Anopheles dirus*, the major vector of
forest malaria in north east India. *Southeast Asian J Trop Med
Public Health* 27: 378–381.

MS, Mak JW, Cochrane AH, 1988. Transmission dynamics and
estimates of malaria vectorial capacity for *Anopheles bala-
bacensis* and *An. flavirostris* (Diptera: Culicidae) in Banggi

Estimation of anopheline survival rate, vectorial capacity and
mosquito infection probability from malaria vector infection
rates in villages near Madang, Papua New Guinea. *J Appl Ecol*
27: 134–147.

Akiyama J, 1968. *Assignment Report, Malaria Eradication Pro-

Covell G, Harbhagwan J, 1939. Malaria in the Wynaad. *South
India* 3: 341–376.

Jaswant S, Jacob VP, 1944. Malaria investigations in north Ka-

Nanda N, Joshi H, Subbarao SK, Yadav RS, Shukla RP, Dua
VK, Sharma VP, 1996. *Anopheles fluviatilis* complex: host
feeding patterns of species S, T and U. *J Am Mosq Control
Assoc* 12: 147–149.

Zahar AR, 1974. Review of the ecology of malaria vectors in the
WHO Eastern Mediterranean Region. *Bullet World Health
Organ* 56: 427–440.

Weckesa JW, Lemenger DA, Yuval B, Washino RK, 1992. Ob-
servations on the blood-feeding behavior of *Anopheles free-
borni* and *Culex tarsalis* in California’s Central Valley. *Proc
Calif Mosq Control Assoc* 60: 82–84.

Blood feeding patterns of *Anopheles freeborni* and *Culex tarsalis*
(Diptera: Culicidae): effects of habitat and host abun-

Bockarie MJ, Service MW, Barnish G, Toure YT, 1995. Vecto-
rial capacity and entomological inoculation rates of *Anopheles gambiae*

Chandler JA, Boreham PFL, Highton RB, Hill MN, 1975. A
study of the host selection patterns of the mosquitoes of the
425.

Duchemin JB, Leong Pock Tsy JM, Rabarison P, Roux J,
Coluzzi M, Costantini C, 2001. Zoophily of *Anopheles arabi-
censis* and *An. gambiae* in Madagascar demonstrated by odour-

Mbogo CN, Kabiru EW, Muiruri SK, Nzovu JM, Ouma JH,
Githeru JI, Beier JC, 1993. Bloodfeeding behavior of *Anophe-

White GB, 1971. Blood feeding habits of mosquitoes in the
South Pare District of Tanzania ten years after cessation of a
134.

behaviour of members of the *Anopheles gambiae* complex in
the Gambia with special reference to *An. melas* and its chro-

Lindsay SW, Wilkins HA, Zieler HA, Daly RJ, Petrarca V,
Byass P, 1991. Ability of *Anopheles gambiae* mosquitoes to
transmit malaria during the dry and wet seasons in an area of
irrigated rice cultivation in The Gambia. *J Trop Med Hyg* 94:
313–324.

Sousa CA, Pinto J, Almeida AP, do Rosario VE, Charlwood JD,
2001. Dogs as a favored host choice of *Anopheles gambiae*
sensu stricto (Diptera: Culicidae) of Sao Tome West Africa.
J Med Entomol 38: 122–125.

Sicilia. Osservazioni in un’area di sospensione dei trattamenti
di DDT. *Parasitologia* 3: 23–51.

Escalar G, 1933. Applicazione sperimentale della zooprofilassi

Romi R, Pierdominici G, Severini C, Tamburro A, Cocchi M,

Davidson G, Ganapathipillai A, 1956. Observations on the bio-
informatics of the adults of some Malayan anopheline mosquitoes.

Laurel AG, 1934. Feeding activities of some Philippine *Anoph-

Ramsay GC, Chandra SN, Lamprell BA, 1936. A record of an
investigation to determine the anophelidic indices of certain
anopheline mosquitoes collected on the estates in Assam and

Barber MA, Rice JB, 1935. Malaria studies in Greece: The ma-
laria infection rate in nature and in the laboratory of certain
species of *Anopheles of East Macedonia. Ann Trop Med* 29:
329–348.

Erlikh VD, 1983. Feeding preferences of *Anopheles* mosquitoes
of the “maculipennis” complex - an index of the effectiveness

Kostick DJ, 1936. The extent to which zoophilism can be taken
into consideration as regards anopheline mosquitoes of S. Ser-

Piccinini F, 1933. Relazione sulla campagna anti-malarica in

Gaschen H, Raynal I, 1937. Recherches sur les affinites tro-

