SHORT REPORT: VARIATION IN MITOCHONDRIAL 12S AND 16S RIBOSOMAL DNA SEQUENCES IN NATURAL POPULATIONS OF TRIATOMA INFESTANS (HEMIPTERA: REDUVIIDAE)

BEATRIZ A. GARCÍA, CANDELA MANFREDI, LAURA FICHERA, AND ELSA L. SEGURA

Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Nacional de Parasitología Dr. Mario Fatafa Chabén, Administración Nacional de Laboratorios e Institutos de Salud, Ministerio de Salud de Argentina, Buenos Aires, Argentina

Abstract. Mitochondrial DNA sequences of the 12S and 16S ribosomal RNA genes were analyzed in five natural populations of the Chagas’ disease vector *Triatoma infestans* from Argentina. DNA sequence comparisons of 878 basepairs (12S plus 16S) revealed 13 haplotypes. A total of 10 private haplotypes were found in four of the populations analyzed, suggesting low current levels of genetic exchange. The levels of genetic differentiation between the population of Chancaní (Córdoba) and other two of the populations analyzed indicated significant deviation from a pattern of unrestricted gene flow. The haplotypic diversity and the private haplotypes found in the geographically closest localities of Chancaní and El Jardín (La Rioja) suggest that the reduction in the population size by insecticide treatment did not avoid the recovery of the populations apparently from survivors of the same area.

Triatoma infestans is the main vector of *Trypanosoma cruzi*, the protozoan agent of Chagas’ disease, in South America between latitudes 10°S and 46°S. The genetic analysis of vector populations may be useful in entomologic surveillance of Chagas’ disease vector control programs because it may provide information on the source of the insects in recolonized areas after insecticide treatment. Previous analyses of 412-basepair (bp) segments of the mitochondrial cytochrome B gene did not show variation within *T. infestans* populations. Here, we analyzed mitochondrial DNA (mtDNA) fragments of the 12S and 16S ribosomal RNA genes in 40 specimens from natural populations of *T. infestans* in localities in four provinces of Argentina (Table 1). All sites were subjected to the same sampling strategy. The insects were collected in each place from different houses or peridomestic sites. Fragments of the 12S (371 bp) and 16S (507 bp) genes were sequenced from asymmetric polymerase chain reaction products by manual and automatic sequencing, respectively. DNA sequences were aligned using the CLUSTAL method implemented in MegAlign, version 1.01 (Lasergene; DNASTAR, Madison, WI). Pairwise F$_{ST}$ estimations, a measure of the variance of gene frequencies between populations, and the analysis of molecular variance were carried out using the software package ARLEQUIN 1.1.5–7

The DNA sequence comparisons of the 12S and 16S (878 bp) genes revealed 13 haplotypes determined by 17 variable sites (Table 2) (GenBank accession numbers AY226891–AY226906). Haplotype A is present in all the localities and only the geographically closest localities of El Jardín and Chancaní shared haplotypes C and A/C. The other 10 haplotypes were present exclusively in one of the populations. These private haplotypes, found in the majority of the populations, suggest limited current levels of genetic exchange. The haplotype network (Figure 1) obtained with the TCS software indicates that the different sequence types observed would have derived from a common ancestral haplotype (A), which persists in the current populations of *T. infestans* after the process of dispersion of this species.

Intra-individual variation was observed in six of the insects analyzed (Table 2). Each heteroplasmic haplotype was entered into the programs and used in the calculations of variability and F$_{ST}$ as two individual different sequences. The percentage of variation within populations was 94.4% and only 5.6% among populations. The levels of genetic differentiation between the populations of Chancaní and Santa María, and Chancaní and Las Lomitas were significant (F$_{ST}$ = 0.165, P < 0.01 and 0.173, P < 0.05, respectively), suggesting that the magnitude of gene flow between these populations is not sufficiently large to mask differences eventually produced by genetic drift or local selective pressures.

El Jardín, with seven haplotypes, showed the highest haplotypic diversity, and Chancaní, with five haplotypes, showed the highest degree of nucleotide diversity (Table 2). The effects of random genetic drift are more likely to cause losses in genetic variation when the insecticide treatments produce severe population reductions (bottlenecks). The haplotype diversity and the private haplotypes found in the treated area of El Jardín and Chancaní indicate that the reduction in the population size did not avoid the recovery of the populations apparently from survivors of the same area. In Las Lomitas, where A is the most frequent

Table 1

Collection sites of *Triatoma infestans* and number of individuals studied in Argentina

<table>
<thead>
<tr>
<th>Site of collection</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa María, Catamarca</td>
<td>26° 41’ S</td>
<td>66° 02’ W</td>
<td>8</td>
</tr>
<tr>
<td>Santa Rosa, Valle Viejo, Catamarca</td>
<td>28° 28’ S</td>
<td>65° 47’ W</td>
<td>3</td>
</tr>
<tr>
<td>El Jardín, General San Martín, La Rioja</td>
<td>31° 26’ S</td>
<td>65° 58’ W</td>
<td>9</td>
</tr>
<tr>
<td>Chancaní, Pocho, Córdoba</td>
<td>31° 26’ S</td>
<td>65° 28’ W</td>
<td>10</td>
</tr>
<tr>
<td>Las Lomitas, Patiño, Formosa</td>
<td>24° 42’ S</td>
<td>60° 35’ W</td>
<td>10</td>
</tr>
</tbody>
</table>
haplotype, the presence of three private haplotypes indicates an intermediate reduction of genetic variation. Conversely, although the small sample size for Santa Rosa may have limited the finding of variability, the absence of variation in this locality, as well as the low variability observed in Santa Maria, suggest severe bottlenecks derived from the insecticide treatments.

Acknowledgment: We thank Octavio Fusco (Servicio de Secuenciación del Instituto Nacional de Parasitología Dr. Mario Fatale Chabén) for sequencing the 16S ribosomal DNA sequences.

Financial support: This research was partially supported by the grants from the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba and Banco de la Nación Argentina, the Secretaría de Ciencia y Tecnología de la Universidad Nacional de La Rioja, and Mundo Sano. Beatriz A. García, Laura Fichera, and Elsa L. Segura are Career Investigators of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina.

Authors’ addresses: Beatriz A. García and Candela Manfredi, Catedra de Bioquímica y Biología Molecular, Pabellón Argentina 2° Piso, Ciudad Universitaria, 5016 Córdoba, Argentina, Telephone: 54-351-433-3024, Fax: 54-351-433-3072 E-mail: bgarcia@biomed.uncor.edu. Laura Fichera and Elsa L. Segura, Instituto Nacional de Parasitología Dr. Mario Fatale Chabén, Avenida Paseo Colón 568, 1063 Buenos Aires, Argentina.

Reprint requests: Beatriz A. García, CC 35, Suc. 16, 5016 Córdoba, Argentina.

REFERENCES

