COMPARISON OF POLYMERASE CHAIN REACTION METHODS FOR RELIABLE AND EASY DETECTION OF CONGENITAL TRYPANOSOMA CRUZI INFECTION

MYRNA VIRREIRA, FAUSTINO TORRICO, CARINE TRUYENS, CRISTINA ALONSO-VEGA, MARCO SOLANO, YVES CARLIER, AND MICHAL SVOBODA

Laboratoire de Chimie Biologique, et Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium; Centro Universitario de Medicina Tropical/Laboratorio de Medicina, Facultad de Medecina, Universidad Mayor de San Simon, Cochabamba, Bolivia

Abstract. The polymerase chain reaction (PCR) is a potentially interesting diagnostic tool for detecting congenital Trypanosoma cruzi infection at birth. We have compared the sensitivity and capacity of a group of T. cruzi PCR primers in detecting the complete spectrum of known T. cruzi lineages, and to improve and simplify the detection of infection in neonatal blood. We found that the two primers, Tcz1/Tcz2 and Diaz1/Diaz2, which target the 195-basepair satellite repeat, detected all parasitic lineages with the same sensitivity. However, the intensity of the amplicon was somewhat higher with Tcz1/Tcz2. For other tested primers (nuclear DNA primers BP1/BP2, O1/O2, Pon1/Pon2, and Tca1/Tca2 and kinetoplast DNA primers S35/S36 and 121/122), either the intensity of amplicons varied according to T. cruzi lineages or the PCR assay was less sensitive. The use of the Tcz1/Tcz2 primers, which target a tandem repetitive sequence, requires a careful determination of the appropriate amount of Taq polymerase to avoid the formation of smears and multiple amplicon bands. The Tcz1/Tcz2 primers resulted in an intense 200-basepair amplicon with DNA extracted from blood equivalent to 0.02 parasites per assay when used with a simple DNA extraction method and of a low amount of Taq polymerase from a standard PCR kit. To better assess such PCR protocol, we assayed 311 samples of neonatal blood previously tested by parasitologic methods. The reliability of our PCR test was demonstrated, since all the 18 blood samples from newborns with congenital T. cruzi infection were positive, whereas the remaining samples (30 from control newborns of uninfected mothers and 262 of 263 from babies born to infected mothers) were negative. Since our PCR method is simple, reliable, robust, and inexpensive, it appears suitable for the detection of T. cruzi infection in neonatal blood, even in laboratories that are not equipped for performing the PCR.

INTRODUCTION

Infection with Trypanosoma cruzi, the agent of Chagas disease, is largely spread over Latin America. Congenital T. cruzi infection involves, depending on the endemic area, 2–10% of children born to infected mothers.1,2 The diagnosis of T. cruzi infection in newborns is essential for the rapid administration of anti-parasitic drugs. Reliable, easy, and rapid diagnostic methods, sensitive enough to give results with a minimum of blood, are needed. The polymerase chain reaction (PCR) is a potentially useful tool that satisfies these criteria.3 Trypanosoma cruzi contains nuclear and kinetoplast DNAs (nDNA and kDNA), both of which contain many repetitive sequences that are highly suitable for PCR detection. The 195-basepair satellite repeat of nDNA is the target of the primers Tcz1/Tcz2 and Diaz1/Diaz2,5,7 which do not amplify DNA from other Trypanosoma or Leishmania.4,5 Other primers have been designed for the amplification of the nDNA repetitive element E13 (O1/O2)4 or the repetitive sequence for the flagellar protein F29 (BP1/BP2).9 The target present on nDNA is directly amplifiable by PCR without any pre-treatment of the sample. However, even when only a few (1-10) parasites are present in a sample, the tandem repeated sequences should be sufficiently well dispersed to result in even distribution of the target.

The conserved domains of minicircles were the target used for the PCR of kDNA with primers S35/S36,6,10–12 121/122,13 CV1/CV2,14 and TCI/TCl2,15 and with unnamed primers.16 However, such PCRs require partial disruption of the dense kinetoplast minicircle with either a nuclease11 or by boiling the sample in the presence of strong chaotropic agents such as guanidine chloride17 to release linear and amplifiable kDNA fragments. In addition, the quantitative reproducibility of such treatments in releasing kDNA minicircles of parasites was not assessed. Moreover, the S35/S36 primers also amplify kDNA of other parasitic Kinetoplastidae such as Leishmania species and T. rangeli, which are found in the same geographic areas as T. cruzi.18

The first T. cruzi PCRs were able to detect only large quantities of DNA and required extraction of large volumes of blood and a supplementary hybridization step or the use of a hot start PCR to increase their sensitivities and specificities.5,13,14,16,19–21 Moreover, the diagnostic application of a PCR also requires the detection of all T. cruzi strains that can infect patients. Recently, T. cruzi was divided in two major lineages. The T. cruzi lineage II has been further divided into five sublineages.22 However, the similarities of the conserved domains of kDNA in all T. cruzi isolates and the capacity of nDNA primers to detect all lineages of the parasite have not been verified.

The goal of our study was to compare different PCR primers to select those that would allow highly sensitive detection of all T. cruzi lineages in the diagnosis of congenital Chagas disease, as well as to improve the PCR protocol to obtain a reliable, robust, and inexpensive test that was easy to perform in developing countries.

MATERIALS AND METHODS

Blood and parasite samples. Umbilical cord blood samples of newborns from T. cruzi-infected or uninfected mothers were collected at the German Urquidi Maternity Hospital (Universidad Mayor de San Simon, Cochabamba, Bolivia). Maternal infection was assessed using classic parasite-specific serologic tests (enzyme-linked immunosorbent assay, hemagglutination, and immunofluorescence).23 We analyzed congenital infection with T. cruzi by direct microscopic examination of theuffy coat fraction of cord blood samples in heparinized microhematocrit tubes and/or by hemoculture.24,25 Cord blood samples were divided into three groups: 1) a con-
PCR FOR DIAGNOSIS OF CONGENITAL T. CRUZI INFECTION

- Isolated from epimastigotes of the T. cruzi lineages and counted before being mixed with the same volume of 6 M guanine-HCl, 0.1 M EDTA, pH 8, boiled for 15 minutes, and kept at 4°C until use. This study was reviewed and approved by the scientific/ethic committees of the Universidad Mayor de San Simon and the Université Libre de Bruxelles. Written consent of the informed mothers was obtained before blood collection.

- Culture-derived T. cruzi trypomastigotes (Tulahuen strain) were collected from the supernatants of fibroblasts from 3T3 rats infected 6–8 days earlier. They were washed three times in cold Dulbecco’s minimal essential medium (Life Technologies/Gibco/BRL, Gaithersburg, MD) and counted before being mixed with parasite-negative human blood samples. Pure DNA was isolated from epimastigotes of the T. cruzi lineages 1, 2a, 2b, 2c, 2d, and 2e and from T. rangeli (kindly provided by Drs. C. Barnabé and M. Tibayrenc, Centre National de Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France) that were grown in liver infusion tryptose medium.

- Extraction of DNA. Preliminary experiments using blood of the acutely infected patient allowed us to assess a simple and reliable method for extraction of DNA. Two-hundred microliters of blood/guanidine solution previously boiled for 15 minutes was extracted once with the same volume of phenol-chloroform, followed by a single extraction with 200 μL of chloroform. One microliter of GenElute-LPA, a soluble polyacrylamide (Sigma, St. Louis, MO), was added to the aqueous phase to significantly increase the reproducibility of precipitation of the DNA with 200 μL of 75% ethanol, dried, and dissolved in 50 L of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8, boiled for 15 minutes, and kept at 4°C until use. This study was reviewed and approved by the scientific/ethic committees of the Universidad Mayor de San Simon and the Université Libre de Bruxelles. Written consent of the informed mothers was obtained before blood collection.

- PCR amplification. The DNA extracted under such conditions was stable for at least three months at 4°C.

PCR amplification. The nuclear and kinetoplastic primers used in the present comparative study are shown in Table 1. This includes the previously described primers and primers Tca1/Tca2, which we designed to target the recently described repetitive element TclRE.26 To perform a maximal number of cycles without generation of secondary or nonspecific products due to overcycling, we used a lower amount (0.12 units) of Taq polymerase (Goldstar PCR kit; Eurogentec, Seraing, Belgium) than is usually recommended. Amplifications were performed using the GeneAmp 2400 apparatus (Perkin Elmer, Norwalk, CT) and 1 μL (10–15 ng) of extracted DNA in 0.2-μL thin-walled tubes, the buffer provided with the Taq polymerase by the manufacturer, 1.9 mM MgCl₂, 0.2 mM of each dNTP, and 0.5 μM of each primer. The final volume of the reaction mixture was 20 μL. Optimal cycling parameters in this apparatus using thin-walled tubes resulted in shorter denaturation and annealing times and a higher programmed temperature than those used in other thermocyclers. Unless indicated otherwise, the cycling program included an initial denaturation at 94°C for 5 minutes, 30–40 amplification cycles at 94°C for 20 seconds, 57°C for 10 seconds, and 72°C for 30 seconds, and a terminal extension at 72°C for seven minutes. Three other PCR kits with automatic hot starts (FastStart; Roche, Basel, Switzerland; Platinum, Bethesda Research Laboratories, Rockville, MD; and Accuprime; Invitrogen, Carlsbad, CA) were also tested in some comparative experiments using the conditions recommended by the manufacturers or with a 1:10 dilution of the recommended amount of Taq polymerase.

- Negative controls were included in each PCR. A PCR amplification of a fragment of the human β-globin gene was systematically performed with DNA extracted from blood samples to assess the integrity of extracted DNA.

- Gel electrophoresis was performed using 1% agarose gels and TAE buffer (40 mM Tris, 40 mM acetate, 1 mM EDTA) in the presence of 0.5 μg/mL of ethidium bromide. A 1-kb

Table 1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Origin of DNA</th>
<th>Size of amplicons (basepairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. cruzi primers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I21</td>
<td>AAATAATGTACGGGKGAGATGCATGA</td>
<td>K</td>
<td>330</td>
</tr>
<tr>
<td>I22</td>
<td>GGTTGATTGCGGTTGTAATATA</td>
<td>N</td>
<td>700</td>
</tr>
<tr>
<td>BP1</td>
<td>ATGGGTTGCTTGTGCGTGGAA</td>
<td>N</td>
<td>195</td>
</tr>
<tr>
<td>BP2</td>
<td>TCAAGGCTTCTCAGCCAGT</td>
<td>N</td>
<td>220</td>
</tr>
<tr>
<td>Diaz1</td>
<td>CGCAACACGATATCGACAGA</td>
<td>N</td>
<td>290</td>
</tr>
<tr>
<td>Diaz2</td>
<td>TGTTCCACACTGGACACCAA</td>
<td>N</td>
<td>240</td>
</tr>
<tr>
<td>O1</td>
<td>TGGCTTGGAGGATATTGTGC</td>
<td>N</td>
<td>250</td>
</tr>
<tr>
<td>O2</td>
<td>AGGAGTACGGGTTGATCGT</td>
<td>N</td>
<td>300</td>
</tr>
<tr>
<td>Pon1</td>
<td>TGGCTTGGAGGATTTATTGT</td>
<td>K</td>
<td>320</td>
</tr>
<tr>
<td>Pon2</td>
<td>AGGAGTACGGGTTGATCGT</td>
<td>N</td>
<td>250</td>
</tr>
<tr>
<td>S35’</td>
<td>ATAATGTACGGGKGAGATGCATG</td>
<td>K</td>
<td>320</td>
</tr>
<tr>
<td>S36’</td>
<td>GGGTTGATTGCGGTTGTAATATA</td>
<td>N</td>
<td>188</td>
</tr>
<tr>
<td>Tca1</td>
<td>AGGACCGACGCAGCGGTGC</td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Tca2</td>
<td>GGTTGCGCAGCAGCTGGAG</td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Tcz1</td>
<td>CGAAGTCTTTGCACCGAGGTGCT</td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Tcz2</td>
<td>CCTCCACAGCGGGTAGTTTACAGG</td>
<td>N</td>
<td>200</td>
</tr>
</tbody>
</table>

* The origin (N = nuclear or K = kinetoplastic) and the approximate size of the amplicons are indicated.
(Life Technologies/Gibco/BRL) ladder was used as a standard. The gels were examined using the Appitek transluminator (300 nm) (Ultra-Violet Products, Inc., San Gabriel, CA) and bands were visualized using Bio1D software (Wilber-Lourmat, Marne la Vallee, France). The same program was used to calculate the relative fluorescent intensity of the bands.

RESULTS

Comparison of primers in the PCR detection of T. cruzi infection. The robustness of our PCR system to variations in fundamental parameters was tested in preliminary experiments. We observed that an increase in the previously described annealing temperature (55°C) up to 60°C for the Tcz1/Tcz2 primers and a reduction in the time did not modify the amplification yield. In addition, only limited variations of the amplification yield was observed for magnesium concentrations between 1.5 mM and 2.5 mM. To increase the sensitivity of our PCR system, we amplified the DNA extracted from either T.cruzi epimastigotes or from blood of an acutely infected patient using the common nDNA primers Tcz1/Tcz2 and Diaz1/Diaz2 and 30, 35, and 40 amplification cycles. As shown in Figure 1, primers Tcz1/Tcz2 showed a visible amplicon of 200 basepairs after 30 cycles. Increasing the number of cycles led to a slight intensification of the 200-basepair band and the occurrence of an additional primer-dimer band. This primer-dimer band amplified during overcycling and was observed under all conditions tested. Thus, its presence is useful as an internal control of amplification. With the primers Diaz1/Diaz2, weak amplification of a 200-basepair was observed after 30 cycles. Its intensity increased after 35 and 40 cycles and no additional band was observed (Figure 1). However, the intensity of the Diaz1/Diaz2 amplicon was lower than that of Tcz1/Tcz2 amplicon. Based on these results, we have continued to use 40 cycles in all our subsequent experiments.

We also tested the other primers shown in Table 1. All resulted in amplicons of the expected sizes with high concentrations (100 fg/assay) of DNA purified from cultured parasites. However, depending on the sample, the kinetoplastid primers S35'/S36' and 121/122 amplified fragments that showed variable intensity, ranging from 10 times lower to similar to that of Tcz1/Tcz2 (see Discussion). The nuclear primers Pon1/Pon2 amplified fragments that showed at least 100 times lower intensity than those amplified with Tcz1/Tcz2. When the amplification was performed with DNA extracted from blood of an acutely infected patient, primers Tca1/Tca2 amplified a 250-basepair amplicon of similar intensity to that obtained with Tcz1/Tcz2 and Diaz1/Diaz2, whereas the primers BP1/BP2 and O1/O2 did not amplify any DNA fragments under these conditions (Figure 2). This low intensity was observed even when annealing temperature was decreased to 53°C.

Trypanosoma cruzi lineages detected by the PCR. Since the differential amplifications observed with the tested primers could arise from primer specificities restricted to some T. cruzi lineages, we tested the primers with aliquots of purified

![Figure 1](https://example.com/fig1.png) Amplification intensity according to the number of cycles for the Tcz1/Tcz2 and Diaz1/Diaz2 primers. DNA was extracted from the blood of an acutely infected patient (Blood) and from Trypanosoma cruzi epimastigotes (Epi) and amplified under the standard conditions described in the Materials and Methods using the indicated number of cycles. Std = standard; Cont = negative control; Prim-dim = primer-dimer band.

![Figure 2](https://example.com/fig2.png) Amplification of DNA extracted from infected blood using various primers. DNA was extracted from blood of an acutely infected patient and amplified under standard conditions described in the Materials and Methods. Shown are the results obtained with the five primer sets (described in Table 1) that have similar hybridization temperatures, which allows the use of the same cycling program. Std = standard; Neg. Cont. = negative control; kb = kilobases.
DNA representing all lineages of *T. cruzi* (1, 2a, 2b₁, 2b₂, 2c, 2d, and 2e) at DNA concentration of 0.2 pg/assay. Primers Tcz1/Tcz2 (Figure 3A) and Diaz1/Diaz2 (Figure 3B) showed strong amplification of similar intensity with all lineages. The Tca1/Tca2 primers also amplified the DNA from all *T. cruzi* lineages, but the band intensity was stronger with the lineages 2c, 2d, and 2e (Figure 3C). The S35/S36 primers showed a more intense 330-basepair amplicon with the lineages 2d and 2e, whereas the primers O1/O2 amplified only a 220-basepair band with DNA extracted from lineages 1, 2a, 2d, and 2e, and the primers BP1/BP2 showed negative results with all lineages. At a DNA concentration of 20 pg/assay, primers BP1/ BP2 amplified all lineages (amplicon of 700 basepairs), except 1 and 2b₁. Based on these results, we selected Tcz1/Tcz2 and/ or Diaz1/Diaz2 primers, which under our experimental conditions, showed amplification of all *T. cruzi* lineages and were easier for routine use. Moreover, we also confirmed that the Tcz1/Tcz2 and Diaz1/Diaz2 primers were not reactive with *T. rangeli* DNA (Figure 3).

Sensitivity of the PCR in detecting *T. cruzi*. The sensitivity of the Tcz1/Tcz2 PCR system was estimated by assessing the amplification of DNA extracted from either *T. cruzi* epimastigotes or blood artificially infected with *T. cruzi* trypomastigotes. Both samples were serially diluted in the DNA solution.

FIGURE 3. Amplification of DNA extracted from all *Trypanosoma cruzi* lineages using various primers. DNA was purified from the reference lineages of *T. cruzi* (1, 2a, 2b₁, 2b₂, 2c, 2d, and 2e) amplified under the standard conditions described in the Materials and Methods. DNA extracted from *T. rangeli* was used as a control of specificity. **A**, Tcz1/Tcz2 primers; **B**, Diaz1/Diaz2 primers; **C**, O1/O2; S35'/S36', and Tca1/Tca2.

Std = standard; *Neg. Cont.* = negative control; *kb* = kilobases.
extracted from T. cruzi-negative blood. Amplification was observed with epimastigote DNA at a concentration as low as 1 fg/assay (Figure 4A). If one assumes a mean DNA content of 300 fg/parasite, this corresponds to approximately 0.003 parasites/assay.

Amplification of DNA extracted from artificially infected blood was performed in four independent duplicate experiments. Figure 4B shows the relative fluorescent intensity of bands as a function of the number of parasites per assay. A strong amplification was observed in all four experiments using DNA corresponding to one parasite per extracted sample (0.1 mL of blood), i.e., 0.02 parasites/assay, and even a 10 times lower amount of T. cruzi DNA was detected (0.002 parasites/assay). Thus, this PCR assay has sensitivity sufficient to detect only one parasite present in a sample. Such sensitivity was similar to that observed using pure parasite DNA (Figure 4).

The limit of detection of the Tcz1/Tcz2 primers was also tested using three hot start PCR kits (Figure 5). When we used the protocols supplied with these kits, we observed smears with bands of approximately 200, 400, and 600 basepairs. These additional bands probably originated from tandem repetitions of target sequences in the T. cruzi DNA. Cross-hybridizations of these longer amplicons probably resulted in the smears observed at higher concentration of target DNA. By decreasing the amount of Taq polymerase recommended by the manufacturers of these kits by a factor of 10, we were able to improve the intensity of the bands, resulting in a sensitivity similar to (FastStart) or higher than (Platinum) that obtained with the Goldstar kit (Figure 5).

Application of the PCR to the diagnosis of congenital T. cruzi infection. We used the procedures developed to screen 311 umbilical cord blood samples described in the Materials and Methods. All samples were tested in duplicate with the Tcz1/Tcz2 primers to detect the presence of parasitic DNA, and with β-globin primers to check the integrity of DNA in the extracted sample. Figure 6 shows two series of PCR results obtained with these samples. Both positive and negative samples showed the β-globin amplicons. A 200-basepair band appeared in all 18 newborns with congenital T. cruzi infections, whereas all 30 parasitologically negative babies born to uninfected mothers showed negative PCR results. The screening of 263 blood samples from parasitologically negative babies born to chagasic mothers showed negative PCR results, except for one sample that previously classified as negative based on the result of the microhematocrit test. Since it was not possible to collect additional blood samples from this baby and to identify by a parasitologic test a possible false-positive PCR result, we repeated the extraction of DNA and the PCR protocol with the same sample. We again obtained a positive PCR result for the presence of T. cruzi DNA.

DISCUSSION

Our results show that a simple, reliable, and inexpensive PCR protocol using Tcz1/Tcz2 primers can be used for the diagnosis of congenital Chagas disease with high sensitivity and specificity for all T. cruzi lineages.

It was previously reported that the use of the blood-guanidine-HCl mixture carries over substances that could inhibit PCR amplification of T. cruzi 195-basepair satellite repeats. For this reason, many investigators use different (more or less complicated) proteinase K digestion steps in the preparation of T. cruzi nDNA. Alternatively, Tth polymerase, which is inhibited less by blood components, has been used instead of Taq polymerase. The simple phenol/chloroform extraction protocol for blood has been used with other primers, such as O1/O2, or with kinetoplastic primers. Use of glycogen as a precipitant carrier in the simple extraction protocol for isolation of kDNA from blood samples has also been reported. Our results show that, at least for the diagnosis of congenital T. cruzi infection, it is
possible to use a blood-guanidine-HCl mixture and a single phenol/chloroform extraction to isolate nDNA of sufficient purity for further PCR amplification. Moreover, the addition of a soluble polyacrylamide as a precipitant carrier to such mixtures improves the reproducibility and the visual control of the nDNA extraction without affecting the subsequent amplification.

Boiling the blood-guanidine-HCl mixture partially disrupts the dense kDNA minicircle. Our data indicate that such treatment also disrupts parasitic nDNA. Indeed, such disruption of nDNA is essential if one wants to detect low numbers of parasites in small volumes of blood. In contrast, an absence of or insufficient disruption of DNA containing highly repetitive target sequences may lead to a random distribution of DNA in the PCR samples, resulting in excessive, poor, or no PCR amplification.

The limit of detection of the PCR using primers Tcz1/Tcz2 was at least 0.002 parasites/assay, i.e., in the same range as other more sophisticated protocols such as post-PCR hybridization, assay of a blood nuclear extract, proteinase K treatment of samples, hot start PCR, competitive PCR, or nested PCR. Our results are consistent with those of a previous report that indicate that the sensitivity of the Tcz1/Tcz2 PCR is approximately 10 times higher than that of the PCR using the kS35/S36 primers, despite the theoretically similar number of targets. Such results might be related to an incomplete dispersion of the dense kinetoplast minicircle present in the blood samples.
Although many PCR systems were previously reported for the detection of *T. cruzi*, their capacity to amplify all lineages of *T. cruzi* at a similar yield was not tested and only the results obtained with few non-typical strains were compared.\(^4,5,28\) Among the six primer pairs we have tested, only Diaz1/Diaz2 and Tcz1/Tcz2, which amplify the same repetitive nuclear sequence, detected all *T. cruzi* lineages with a similar intensity. In contrast, we observed that some of the nDNA primers, such as Bp1/Bp2 or O1/O2, which have been recommended for the detection of *T. cruzi*,\(^9,28\) amplified only some lineages. This suggests that there may be variations in the corresponding repetitive nuclear sequences between lineages. Such primers might be potentially useful in the determination of parasite lineage groups, but not for diagnosis application. Moreover, although kDNA primers might equally amplify all lineages,\(^10,14\) we observed that the primers S35'/S36' resulted in amplicons of different intensities. Similar results were obtained with the nuclear primers Tca1/Tca2. Nevertheless, since these primers could amplify DNA of all lineages, they might be useful in second-line PCR assays to assess doubtful results when contamination with the Tcz1/Tcz2 amplicon is suspected.

Our protocol is more simple and shorter than the previously published protocol used for detection of congenital *T. cruzi* infection.\(^3\) The sensitivity of our PCR protocol using Tcz1/Tcz2 primers is sufficient for diagnostic applications, since a single parasite can be detected in a reasonable volume of blood (0.1 mL). Such sensitivity should be sufficient to detect congenital infection corresponding to an acute parasitemic phase. All newborns congenitally infected with *T. cruzi*.

FIGURE 5. Results obtained with the Tcz1/Tcz2 primers in hot start polymerase chain reaction (PCR) kits. DNA was extracted from human blood artificially infected with trypanastigotes (equivalent to 2 or 0.02 parasites [p]/assay) and amplified using 10 units/assay of Taq polymerase (Pol) as recommended by the suppliers or with 1 unit/assay in our standard cycling conditions described in the Materials and Methods. Std = standard; bp = basepairs.

FIGURE 6. Detection of *Trypanosoma cruzi* DNA in extracts of umbilical cord blood. DNA was extracted and amplified as described in the Materials and Method. Each sample was assayed with Tcz1/Tcz2 primers for the presence of *T. cruzi* DNA (Tcz band), and with β-globin primers (βglob) to test the integrity of extracted DNA. Each sample was assayed in duplicate. Numbers correspond to different blood samples. Positive controls (C+1 and C+2) correspond to epimastigote DNA at concentrations of 0.1 and 1 pg/assay, respectively. Std = standard; Prim-dim = primer-dimer band.
PCR FOR DIAGNOSIS OF CONGENITAL T. CRUZI INFECTION

Myrna Virreira, Laboratoire de Chimie Biologique et Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium. Cristina Alonso-Vega is a fellow of the Association pour la Promotion de l’Education et la Formation à l’Étranger (Association pour la Promotion de l’Education et la Formation à l’Etranger, Communauté Française de Belgique). We thank Eduardo Suarez, Marios Cordova, and the staff of the maternity Gernot Anger, for technical assistance; and Michel Tibayrenc and Chris- tian Barnabe (Genétique des Maladies Infectieuses, Unité Mixte, Centre National de Recherche Scientifique, Institut de Recherche pour le Développement no. 9926, Montpellier, France) for providing plasmids of T. cruzi sequences: use in diagnosis of Chagas’ disease. Mol Biochem Parasitol 51: 205–210.

