REPELLENCY OF LIVE POTTED PLANTS AGAINST ANOPHELES GAMBIAE FROM HUMAN BAITS IN SEMI-FIELD EXPERIMENTAL HUTS

AKILILU SEYOUN, EPHANTUS W. KABIRU, WILBER LWANDE, GERRY F. KILLEEN, AHMED HASSANALI, AND BART G. J. KNOLS

International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Department of Zoology, Kenyatta University, Nairobi, Kenya; Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia; Department of Tropical Medicine, School of Public Health and Tropical Medicine, Center for Infectious Diseases, Tulane University Health Sciences Center, New Orleans, Louisiana

Abstract. The repellency of potted plants against the malaria vector Anopheles gambiae sensu stricto Giles was quantified in experimental huts under semi-field conditions inside a screen-walled greenhouse. Ocimum americanum Linnaeus (Labiatae), Lantana camara L. (Verbenaceae), and Lippia uckambensis Spreng (Verbenaceae) repelled at an average of 39.7% (95% confidence interval [CI] = 29.6–48.4%), 32.4% (95% CI = 19.7–43.1%), and 33.3% (95% CI = 21.5–43.3%) of the mosquitoes, respectively (P < 0.0001 for all treatments). This was determined by logistic regression, allowing for variations associated with different bait hosts, sampling huts, and replicate test nights. In contrast, Ocimum kilimandscharicum Guerke (Labiatae), Ocimum suave Willd. (Labiatae), Corymbia citriodora Hook (Myrtaceae), Azadirachta indica A. Juss (Meliaceae), and Tagetes minuta L. (Asteraceae) did not significantly repel mosquitoes. The combination of O. americanum with either L. camara or L. uckambensis repellled 31.6% (95% CI = 19.7–41.7%) and 45.2% (95% CI = 34.7–54.0%) of the mosquitoes, respectively (P < 0.0001 for both treatments). This study is the first to show that live intact plants can reduce domestic exposure to malaria vector mosquitoes. As such, they may represent a new, sustainable and readily applicable malaria vector control tool for incorporation into integrated vector management programs.

INTRODUCTION

Vector-borne diseases are among the most important public health problems and obstacles to socioeconomic development of developing countries, particularly in the tropics, with malaria alone causing an estimated 1.5–2.7 million deaths and 300–500 million cases per year.1 To date, no method of malaria control has proven effective enough to control the high transmission intensities found in sub-Saharan Africa.2–5 Even the most efficacious of these, such as pyrethroid-treated bed nets, have proven difficult to implement on a sustainable basis for reasons of availability, acceptability, and cost.6–8 However, with increasing problems of toxicity to non-target organisms and the resistance of mosquitoes to synthetic insecticides,9 interest in natural or botanical insecticides has been revived. Natural and synthetic insect repellents are well established as means of personal protection against biting arthropods and the various pathogens they may carry.10,11

We have examined the potential use of mosquito repellent plants and their modes of application, with an emphasis on materials and methods that can be locally used by communities with minimal external input. Ethnobotanical studies of traditionally used mosquito repellent plants in western Kenya showed that many of the most commonly used plants are indeed effective against malaria vectors when burned or thermally expelled with domestic charcoal stoves.12 Moreover, these surveys also revealed that some of the plants were commonly applied by cutting the branches and placing them inside houses, particularly around beds. We therefore hypothesized that live, intact, potted plants may work in a similar way and represent a sustainable and cost-effective way to protect humans against host-seeking malaria vectors. Here we report the repellency of selected potted plants against the malaria vector Anopheles gambiae sensu stricto Giles by using a novel semi-field experimental system.

MATERIALS AND METHODS

Mosquito and plant species. Semi-field tests of the repellency of nine individual candidate plants and some combinations thereof were carried out with a laboratory colony of An. gambiae s.s. maintained at the Mbita Point Research and Training Center at the International Centre of Insect Physiology and Ecology, as previously described.12 The plant species tested were Ocimum americanum Linnaeus (Labiatae), Lantana camara L. (Verbenaceae), Azadirachta indica A. Juss (Meliaceae), Tagetes minuta L. (Asteraceae), and Hypis suaveolens Poit. (Lamiaceae). The latter four species were included in the test as candidate repellent plants based on empirical information from our own unpublished work and from the literature.13–15 The other five species were selected for experimentation based on ethnobotanical information obtained locally.12 Furthermore, the impact of the combined use of two repellent plants (O. americanum with either L. camara or L. uckambensis) in reducing house entry and human feeding by mosquitoes was also evaluated.

Semi-field quantification of the repellency of selected plants. The effect of potted plants on human-vector contact of An. gambiae was determined under semi-field conditions inside a screen-walled (shade netting = 90%) greenhouse (7.1 × 11.5 meters) with two experimental huts (Figure 1). These were rectangular (3.2 × 2.7 meters) and made of hard board (plywood) and internally painted with white paint. The roofs were covered with black cloth inside and reed mats outside. Each night, 10 potted test plants (fresh branches of the tree for C. citriodora) were suspended under the eaves of one of the huts (five on each side) while 10 pots with Hyparrhenia rufa Stapf (Poaceae), a local wild grass, were placed in a similar position on the other hut to serve as a control one hour before the start of the experiment. Some leaves of the
plants were bruised by hand five minutes before the onset of the experiment to enhance release of repellent volatiles. Five potted plants of each species were used for testing the combined use of two repellent plants. A cross-over design was used in which the treatment and control were exchanged between the two huts on different nights. Each night 200, 5–7-day-old, unfed female *An. gambiae s.s.* from a colony that was originally initiated from adults collected in 1996 at Njage village in southeastern Tanzania were used in the experiments. They were starved for six hours, released from a paper cup at the center of the screen house at 8:00 pm local time, and recaptured in the two huts by the human landing catch until midnight. Human collectors (two African men 35 and 20 years old) exchanged positions between the huts every 30 minutes to minimize bias caused by differential attractiveness and collection skills. Experiments were replicated four times on four different nights by changing the arrangement of treatment and control plants to the huts. Ethical clearance was obtained from the Kenya Medical Research Institute (KEMRI) National Ethical Review Committee (KEMRI/RES/7/3/1) for the involvement of human subjects involved in this experiment.

Data analysis. Logistic regression analysis was used to determine the significance of the effect due to plant treatment and other sources of variations using SAS 8.1 for Windows. The proportion of recaptured mosquitoes recovered in the treatment hut for each candidate plant was analyzed by logistic regression. By considering only those mosquitoes that actually chose to bite in a given 30-minute period, the probability (P) of biting in the treated huts was estimated from the data on the proportion biting in the treatment huts. A forward stepwise selection procedure was used to fit the model, including only parameters reflecting other potential sources of variation that were found to be significant (P < 0.05). The list of parameters from which these were chosen includes arrangement of huts, arrangement of collectors, replicates, and time. Standard errors of the means and 95% confidence intervals (CIs) of the fitted parameters were estimated by maximum likelihood analysis. The percentage repellency (R) was calculated using the proportions of the total catch in the control P(C) and treatment huts P(T):

\[R(\%) = 100 \times \left(\frac{P(C) - P(T)}{P(C)} \right) \]

Given that all the mosquitoes recaptured either chose the treatment or control hut:

\[P(C) = 1 - P(T) \]

Substituting into equation 1:

\[R = 100 \times \left(1 - 2P(T) \right)/(1 - P(T)) \]

Repellency was estimated using the parameter estimate of the intercept \(\beta_0 \). By definition, \(\beta_0 \) is the natural log of the treatment over the control:

\[\beta_0 = \ln \left(\frac{P(T)}{1 - P(T)} \right) \]

Which by rearrangement, \(\beta_0 \) yields:

\[T = \exp(\beta_0)/(1 + \exp(\beta_0)) \]

Mean repellency and confidence intervals for that estimate were therefore calculated by substituting equation 5 into equation 3, using the estimates for \(\beta_0 \) and its confidence intervals respectively, as derived from logistic regression analysis.

RESULTS

When the possible effects due to other factors such as the arrangement of huts, collectors, time of collections and replicates were taken into account, *O. americanum, L. camara*, and *L. uckambensis* were all found to be effective repellents, reducing domestic exposure by 30–40% (Table 1). Combining *O. americanum* with either *L. camara* or *L. uckambensis* was similarly effective, but no obvious synergism was observed. * Ocimum kilimandscharicum, O. suave, C. citriodora, A. indica, T. minuta, or H. suaveolens* were not even mildly repellent to *An. gambiae*, even though some of these plants were found to be quite potent when directly burned or thermally expelled.

The effects of other sources of variation in our experimental setup are shown in Table 2. Logistic regression using forward stepwise selection indicated that the arrangement of huts was a significant source of variation during the test periods for five candidate plants. Large differences were also observed between the catches of mosquitoes by the two persons involved in human landing catches for all but one of the trials, but replicate was found to be a significant source of variation on only two occasions. No significant effect due to time of collection was observed in any of the trials, indicating that live plants do not appreciably vary in their repellent properties at different times of the night.

DISCUSSION

This study is the first to our knowledge to demonstrate that live intact plants can repel mosquitoes to reduce domestic exposure. Although the mosquito plant *Pelargonium citrosum* Voiget (Geraniaceae) is reported to repel host-seeking mosquitoes from areas near the plant because of its citronella-like scent, it appears ineffective when evaluated under field conditions. Intact plants may represent a new and readily applicable vector control tool to be integrated into vector management programs and indeed one of these plants, *L. camara,*...
is already commonly used for hedges around the huts in many villages around Lake Victoria.

We caution, however, that field studies are required to fully evaluate the effectiveness of these plants in community dwellings. Although this semi-field system has many clear advantages,12 full field trials are essential to rule out possible artifacts resulting from overlap of the repellent range of the treatment hut with the control hut and possible differences in the behavior of mosquitoes where they are not constrained. In this semi-field set up, where mosquitoes are released at a mid-way point between control and treatment huts at a distance of 1.75 meters, mosquitoes can readily choose to fly towards the control hut and avoid the treatment hut when the candidate plant is indeed repellent. However, under real field conditions, where distances between dwellings are usually much greater, the use of the same plant-derived repellent may not have the same effect without an alternative, unprotected host nearby, so mosquitoes may be less easily diverted from humans by repellent volatiles. Field evaluations of potted plants and the experimental setup. Recent studies have shown that volatile oils extracted by steam distillation of O. americanum, especially with addition of 5% vanillin, repelled Aedes aegypti L., An. dirus Peyton & Harrison, and Culex quinquefasciatus Say under cage conditions for up to eight hours.20 Furthermore, extracts from the closely related species O. canum Sims (Labiatae) showed strong larvicidal properties against An. gambiae s.s. in Tanzania.21 Similarly, topical application of L. camara flower extract in coconut oil resulted in 94.5% protection against Ae. albopictus Skuse and Ae. aegypti with a mean protection time of 1.9 hours in India.22 Essential oil from leaves of L. uckambensis also has mosquito repellent properties (Lwande W, unpublished data).

The three plants found to be repellent, O. americanum is the most commonly used repellent plant by the community on Rusinga Island in western Kenya.12 Although there are no previous reports on the repellency of intact plants considered in this study, topical skin treatment of juices from the green leaves and inflorescences of O. americanum and O. suave have reduced the feeding rates of An. gambiae mosquitoes from Tanzania by 56% and 45%, respectively.19 However, direct comparisons cannot be made with the results of this study due to differences in the methods of application of the plants and the experimental setup. Recent studies have shown that volatile oils extracted by steam distillation of O. americanum, especially with addition of 5% vanillin, repelled Aedes aegypti L., An. dirus Peyton & Harrison, and Culex quinquefasciatus Say under cage conditions for up to eight hours.20 Furthermore, extracts from the closely related species O. canum Sims (Labiatae) showed strong larvicidal properties against An. gambiae s.s. in Tanzania.21 Similarly, topical application of L. camara flower extract in coconut oil resulted in 94.5% protection against Ae. albopictus Skuse and Ae. aegypti with a mean protection time of 1.9 hours in India.22 Essential oil from leaves of L. uckambensis also has mosquito repellent properties (Lwande W, unpublished data).

Table 1

<table>
<thead>
<tr>
<th>Plant species</th>
<th>English name</th>
<th>Local name (Dholuo)</th>
<th>No. recaptured</th>
<th>Intercept parameter estimate (β ± SEM)</th>
<th>% Repellency (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azadirachta indica</td>
<td>Neem</td>
<td>Arubai</td>
<td>379</td>
<td>339</td>
<td>0.0479 ± 0.082</td>
<td>4.9 (2.3–10.9)</td>
</tr>
<tr>
<td>Corymbia citriodora</td>
<td>Lemon eucalyptus</td>
<td>Bap-karadali</td>
<td>319</td>
<td>302</td>
<td>0.0656 ± 0.0824</td>
<td>6.8 (2.5–9.4)</td>
</tr>
<tr>
<td>Hyiptis suaveolens</td>
<td>Wild spikenard</td>
<td>Abuba</td>
<td>179</td>
<td>202</td>
<td>−0.1209 ± 0.1027</td>
<td>11.4 (−8.8–27.8)</td>
</tr>
<tr>
<td>Lantana camara</td>
<td>Fever tea</td>
<td>Nyabend winy</td>
<td>264</td>
<td>432</td>
<td>−0.3915 ± 0.0863</td>
<td>32.4 (19.7–43.1)</td>
</tr>
<tr>
<td>Lippia uckambensis</td>
<td>L.</td>
<td>Lime basil Mieny madongo</td>
<td>283</td>
<td>456</td>
<td>−0.5063 ± 0.0779</td>
<td>39.7 (29.6–48.4)</td>
</tr>
<tr>
<td>Ocimum americanum</td>
<td>African blue basil</td>
<td>Mweny</td>
<td>335</td>
<td>325</td>
<td>−0.0353 ± 0.0772</td>
<td>−8.5 (−26.6–7.0)</td>
</tr>
<tr>
<td>Ocimum suaveolens</td>
<td>Tree basil</td>
<td>Mieny madongo</td>
<td>343</td>
<td>372</td>
<td>−0.1170 ± 0.0793</td>
<td>11.0 (−4.2–24.1)</td>
</tr>
<tr>
<td>Tagetes minuta</td>
<td>Khaki weed</td>
<td>Nyanjaga</td>
<td>388</td>
<td>351</td>
<td>0.0817 ± 0.0772</td>
<td>8.5 (−13.9–18.2)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Hut location</th>
<th>Person</th>
<th>Replicate</th>
<th>P</th>
<th>OR†</th>
<th>P</th>
<th>OR‡</th>
<th>P</th>
<th>OR§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azadirachta indica</td>
<td>NS</td>
<td>NA</td>
<td><0.0001</td>
<td>0.157</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corymbia citriodora</td>
<td>0.0128</td>
<td>0.664</td>
<td><0.0001</td>
<td>0.470</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyiptis suaveolens</td>
<td>NS</td>
<td>NA</td>
<td><0.0001</td>
<td>0.175</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lantana camara</td>
<td>NS</td>
<td>NA</td>
<td><0.0001</td>
<td>0.322</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lippia uckambensis</td>
<td>NS</td>
<td>NA</td>
<td><0.0001</td>
<td>0.494</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum americanum</td>
<td>0.0021</td>
<td>0.622</td>
<td><0.0001</td>
<td>0.266</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum suaveolens</td>
<td>NS</td>
<td>NA</td>
<td><0.0001</td>
<td>0.324</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tagetes minuta</td>
<td>0.0001</td>
<td>0.554</td>
<td><0.0001</td>
<td>0.341</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. uckambensis + O. americanum</td>
<td>0.0183</td>
<td>0.663</td>
<td><0.0001</td>
<td>0.304</td>
<td>NS</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soxhlet and steam distillation extracts of *T. minuta* are larvicidal to *Ae. aegypti* and *An. stephensi* Liston. The repellent action of neem (*A. indica*) cream (5% neem oil in vanishing cream) was also reported to afford more than 90% protection against both anopheline and culicine mosquitoes in the field. Kerosene lamps containing neem oil also reduce the biting and indoor resting density of mosquitoes, with better protection against *Anopheles* than *Culex*. *Ocimum suave* and *O. kilimandscharicum* repel insect pests of stored products and cloth treated with quwenling (the waste distillate cream) was also reported to afford more than 90% protection against *An. gambiae* in semi-field trials. Potted plants may represent a new, sustainable, and readily applicable malaria control tool for incorporation into integrated programs.

Acknowledgments: We thank Drs. K. Pålsson and A. Odulaja for valuable discussions and comments on the manuscript. Anonymous reviewers whose comments were very constructive helped improve the manuscript substantially. We also thank B. Njiru, F. Oketich, J. Arija, and H. Ali Akelo for their technical assistance.

Financial support: This study was supported by the UNDP/World Bank/World Health Organization Special Program for Research and Training in Tropical Diseases (TDR), grant 990056, and the National Institutes of Health (grant numbers ICIDR-U19AI4511 and ABC-D43TW01142). Aklilu Seyoum received financial support from the Ministry of Foreign Affairs of The Netherlands (program number RF 042603/4).

Authors’ addresses: Aklilu Seyoum, International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya, Department of Zoology, Kenyatta University, PO Box 43844, Nairobi, Kenya, and Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia; Telephone: 254-385-222-10/13/16, Fax: 254-385-22190, E-mail: aseyoum@icipe.org, Ephantus W. Kabiru, Department of Zoology, Kenyatta University, PO Box 43844, Nairobi, Kenya. Wilber Lwande, Ahmed Hassanali, and Bart G. J. Knols, International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya. Gerry F. Killeen, International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112.

Reprint requests: Aklilu Seyoum, International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya.

REFERENCES

REPELLENCY OF LIVE POTTED PLANTS AGAINST AN. GAMBIAE