IN VITRO ACTIVITY OF TAFENOQUINE ALONE AND IN COMBINATION WITH ARTEMISININ AGAINST PLASMODIUM FALCIPARUM

MICHAEL RAMHARTER, HARALD NOEDEL, KRONGTHONG THIMASARN, GERHARD WIEDERMANN, GUNTHER WERNSDORFER, AND WALTHER H. WERNSDORFER

Department of Specific Prophylaxis and Tropical Medicine, Institute of Pathophysiology, University of Vienna, Vienna, Austria; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Communicable Diseases, Ministry of Public Health, Nonthaburi, Thailand

Abstract. Emergence and spread of drug-resistant falciparum malaria has created an urgent demand for alternative therapeutic agents. This study was conducted to assess the in vitro blood schizontocidal activity of tafenoquines, the most advanced candidate drug of the 8-aminoquinolines, and of its 1:1 combination with artemisinin in fresh isolates of Plasmodium falciparum in an area with multi-drug resistance, measuring the inhibition of schizont maturation. In 43 successfully tested parasite isolates, the mean effective concentrations (ECs) of tafenoquine were 209 nmol/L for the EC_{50} and 1,414 nmol/L for the EC_{90}. Tafenoquine showed no significant activity relationships with mefloquine, artemisinin, and chloroquine. With quinine, a highly significant activity relationship was observed at the EC_{50}, but not at the EC_{90}. The EC_{50} and EC_{90} of the tafenoquine-artemisinin combination were 15.9 nmol/L and 84.3 nmol/L. The combination was synergistic. Tafenoquine appears to be a promising candidate for treating multidrug-resistant falciparum malaria, especially in combination with artemisinin derivatives.

INTRODUCTION

Over the past decades, the emergence and spread of drug-resistant strains of Plasmodium falciparum caused increasing difficulties in the therapy and prophylaxis of malaria. The ability of P. falciparum to quickly adapt to recently introduced drugs hastened the pace of the development of new antimalarial agents. In addition, there is also a growing demand for alternative therapeutic agents for Plasmodium vivax infections due to chloroquine resistance of asexual blood forms and low sensitivity of hypnozoites to primaquine in some areas.

The 8-aminoquinoline primaquine is the only available drug for antirelapse treatment of vivax malaria. Apart from the hypnozoitocidal activity against P. vivax, primaquine shows good tissue schizontocidal and gametocytocidal efficacy, but insufficient blood schizontocidal activity against P. falciparum. The need for an increased dosage in the treatment of infection with P. vivax strains with primarily low primaquine sensitivity, e.g., the Chessor strain, highlights the limitations of this drug. Primaquine may cause methemoglobinemia and can lead to life-threatening hemolysis in glucose-6-phosphate dehydrogenase (G6PD)−deficient patients.

This problem led to a systematic exploration of the 8-aminoquinolines to identify compounds with higher blood schizontocidal and hypnozoitocidal activity, an improved safety profile, and more convenient drug regimens.

Among the 8-aminoquinolines, compound WR 238 605 (tafenoquine), a 5-phenoxy primaquine derivative, is the most advanced candidate compound. It originates from the antimalarial drug research program of the Walter Reed Army Institute for Research. The first report on the drug was in 1985. In preclinical studies, it was found to fulfill expectations since it showed high activity against hypnozoites and tissue schizonts, as well as asexual blood forms. Its ability to interrupt the sexual phase of the parasites’ life cycle is due to the inhibition of oozyst maturation and the interruption of sporozoite invasion into the salivary glands of the mosquito; however, the drug shows little direct gametocytocidal activity.

Like primaquine, tafenoquine is also not devoid of the risk of side effects. It seems to have the potential of forming methemoglobin and may cause hemolysis in G6PD-deficient individuals. One major difference between primaquine and the 5-phenoxy primaquine derivative tafenoquine (WR 238 605), is the considerably longer mean plasma half-life of the new drug. While primaquine has a mean half-life of approximately six hours, tafenoquine was found to have a mean ± SD half-life of 361 ± 40 hours. This fact allows for more convenient dosing, but at the same time increases the risk of promoting the development of drug resistance if used on a large-scale in areas with intensive malaria transmission.

In several clinical studies, tafenoquine was also tested as a prophylactic and anti-relapse treatment with encouraging results. So far, the potential of tafenoquine as a blood schizontocide for the treatment of multidrug-resistant forms of falciparum malaria has not been methodically explored. The results of studies in animal models and of an in vitro screening investigation of 13 different 8-aminoquinolines showed that tafenoquine has a blood schizontocidal activity that is within a therapeutically achievable concentration range. Furthermore, it showed no cross-relationships with classical antimalarial drugs, but a resistance-reversing effect with chloroquine.

The aim of this study was the exploration of the potential of tafenoquine as an alternative candidate for the treatment of multidrug-resistant falciparum malaria and the assessment of baseline sensitivity data, based on the inhibition of schizont maturation. Tafenoquine was also tested in a 1:1 (mol/mol) combination with artemisinin. Apart from speeding up clinical response, drug combinations may delay the emergence and spread of drug resistance.

Since tafenoquine is a slow-acting antimalarial, artemisinins may be ideal partners due to their rapid onset of action, affordability, and the absence of significant in vivo resistance.

MATERIALS AND METHODS

The study took place in the northwestern border regions of Thailand at the Malaria Clinic of Mae Sot in close proximity to the Thailand-Myanmar border from July to August 2000. In this area, which is thought to harbor the most resistant forms of falciparum malaria in the world, P. falciparum shows...
a high degree of resistance to chloroquine and antifolates, and a considerably reduced sensitivity to mefloquine and quinine.11

The study was conducted in the course of the regular monitoring of the sensitivity of \textit{P. falciparum} in Thailand under the auspices of the Malaria Division of the Ministry of Public Health of Thailand. These activities are covered by a clearance from the Ethical Committee of the Ministry of Public Health of Thailand. Outpatients with clinically manifest \textit{falciparum} malaria were invited to participate in this study and informed consent was obtained from all individuals included in the study. All participants had microscopically confirmed \textit{P. falciparum} monoinfections. The geometric mean asexual parasite density was 29,595/µL (95% confidence interval [CI] = 22,473–38,972/µL). The patients had a (reported) minimum of four weeks without antimalarial treatment prior to inclusion. The intensive migration between the neighboring border regions is reflected by the fact that the majority (59%) of the patients had acquired their infections in Myanmar. Only seven of the 58 patients included in the study were females and the mean ± SD age was 24.1 ± 9.6 years.

The test procedure was based on the standard World Health Organization (WHO) \textit{in vitro} micro-test technique for the assessment of the response of \textit{P. falciparum} to antimalarial drugs.15 This test system measures the drug-dependent inhibition of schizont maturation. Tests were conducted with tafenoquine (batch no. TFN-A-02C2, 14.04.99; SmithKline Beecham; now GlaxoSmithKline, Worthing, West Sussex, UK), artemisinin (Laboratory Standard; Academy of Military Science, Beijing, People’s Republic of China), and a 1:1 tafenoquine-artemisinin mixture. To establish a comparable standard for further \textit{in vitro} testing, the WHO \textit{in vitro} microtechnique was adapted to the use of tafenoquine. In addition, parallel routine tests (WHO test kit; Regional Office for the Western Pacific, Manila, The Philippines) were conducted with chloroquine, mefloquine, and quinine.

Blood (0.3 ml) was collected from each patient in sterile, heparinized capillary tubes and added to 7.4 ml of RPMI 1640 culture medium with reduced content of p-aminobenzoic acid and folic acid (3.9% blood-medium-mixture). Fifty microliters of the blood-medium-mixture (BMM) was added to the wells of Falcon® 3070 plates Becton-Dickinson and Company, Franklin Lake, NJ. These test plates were preseeded with ascending increasing quantities of tafenoquine (0.5–500 pmol/well corresponding to 10–10,000 nmol/L of BMM), artemisinin (0.15–150 pmol/well), and a 1:1 combination of both drugs (0.1–100 pmol/well). After 24 hours of incubation at 37.5°C, the cultures were harvested and a thick film prepared from each well. After thorough drying, the thick films were stained with Giemsa solution at pH 6.85. The number of schizonts (≥3 nuclei) per 200 asexual parasites was microscopically counted. Isolates with a schizont maturation rate of less than 10% in the control well were excluded.

Regression parameters and effective concentrations were estimated according to the classical method of Litchfield and Wilcoxon.16,17 Activity correlations between different drugs were calculated by Pearson’s parametric test or Spearman’s rank test. All tests were performed at a two-sided significance level of α = 5% (P < 0.05). Assuming a fully additive activity of tafenoquine and artemisinin the expected effective concentration (EC) values and the expected regression parameters were calculated by the following formula:

\[
\text{Exp.inhib.}\% = \frac{\text{obs.abs.Inhib.}A + (1 - \text{obs.abs.Inhib.}A) \times \text{obs.abs.Inhib.}B}{100} \\
\text{Exp} = \text{expected obs} = \text{observed abs} = \text{absolute A = drug A B = drug B}
\]

The quotient of observed and expected effective concentrations at different EC levels indicates antagonism (> 2), partial additivity (1 < x < 2), fully additive activity (x = 1), or synergism (x < 1).

RESULTS

Tafenoquine. Of a total of 58 isolates, 43 (74%) were successfully tested for their susceptibility to tafenoquine. Fifteen isolates had to be excluded due mostly to pre-incubation asexual parasite densities > 80,000/µL and/or schizont maturation < 10%. The geometric mean of the cut-off points (i.e., the lowest concentrations at which no schizont maturation was observed) was 4,360 nmol/L. All isolates except for one were fully inhibited within the test range. When the log-concentration/probit-response regression for tafenoquine was calculated, the chi-square value for heterogeneity was 8.99, which was below the limit of 11.07. This indicated an acceptable fit of the observed data points to the log-normal regression model. The mean 50% effective concentration (EC\textsubscript{50}) for tafenoquine was 208.7 nmol/L (95% CI = 134.0–325.1 nmol/L). The corresponding EC\textsubscript{90} and EC\textsubscript{99} values were 1,413.6 nmol/L (95% CI = 766.6–2,606.5 nmol/L) and 6,722.9 nmol/L (95% CI = 2,783.6–16,237.3 nmol/L), respectively, (Table 1 and Figure 1).

Correlation analysis. Parallel \textit{in vitro} tests were conducted with tafenoquine, quinine, mefloquine, chloroquine, and artemisinin. Individual EC\textsubscript{50} and EC\textsubscript{90} values were calculated for all drugs and isolates. The results of the correlation analysis (Pearson) are listed in Table 2. While a highly significant activity correlation was observed between tafenoquine and quinine at the EC\textsubscript{50} level (P = 0.0016), this was not the case at the EC\textsubscript{90}. For all other drugs (mefloquine, chloroquine, and artemisinin) the activity correlation remained well below the threshold of statistical significance. Correlation analysis was repeated using the Spearman rank correlation test, and this yielded practically the same results as those obtained with the Pearson method.

Interaction. Forty \textit{P. falciparum} isolates were successfully tested for their response to artemisinin, tafenoquine, and their combination. The chi-square values were 1.32 for artemisinin and 0.34 for the drug combination 0.34; therefore, these values were well within permissible limits.

The geometric mean cut-off concentration for the 1:1 tafenoquine-artemisinin combination for the 37 isolates was 6,722.9 nmol/L (95% CI = 2,783.6–16,237.3 nmol/L).

Table 1 Effective concentrations (ECs) and 95% confidence intervals (CIs) (nmol/L) of tafenoquine (n = 43) and artemisinin (n = 40) for \textit{Plasmodium falciparum}

<table>
<thead>
<tr>
<th>EC</th>
<th>Tafenoquine</th>
<th>Artemisinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>95% CI</td>
<td>Mean</td>
</tr>
<tr>
<td>EC\textsubscript{1}</td>
<td>6.5</td>
<td>2.7–15.6</td>
</tr>
<tr>
<td>EC\textsubscript{50}</td>
<td>208.7</td>
<td>134.0–325.1</td>
</tr>
<tr>
<td>EC\textsubscript{90}</td>
<td>1,413.6</td>
<td>766.6–2,606.5</td>
</tr>
<tr>
<td>EC\textsubscript{99}</td>
<td>6,722.9</td>
<td>2,783.6–16,237.3</td>
</tr>
</tbody>
</table>

The in vitro microtest system permits a quantitative assessment of the sensitivity of asexual blood forms of *P. falciparum* to tafenoquine. The overall success rate of 74% (43 of 58 isolates) is within an acceptable range. Most (15) of the excluded isolates had pre-incubation parasite densities greater than 80 000/μL, thus disinqualifying them from inclusion since parasitemia above this threshold leads to an early exhaustion of the buffering capacity of the culture medium.13 This usually results in poor schizont maturation, i.e., schizont counts < 10%. It is difficult to avoid this constraint since the degree of parasitemia often changes during the interval between primary blood examination and sampling for the test, and precise pre-incubation counts become available only after having set up the test.

In this study, tafenoquine was found to possess marked blood schizontocidal activity in *P. falciparum* in an area with a high percentage of multidrug-resistant parasite populations. The observed EC values were in the same range as those found with quinine, while artemisinin showed 6–10 times lower values for the EC50 and EC90. Related to blood-medium mixture, tafenoquine EC values were 2.4 (EC50) to 5 (EC90) times higher than those of chloroquine and 10 (EC50) to 20 (EC90) times higher than the ECs for mefloquine.

There are no comparable data available from *in vitro* tests measuring the inhibition of schizont maturation. Therefore, the comparison is essentially limited to a study with the hypoxanthine uptake method in seven culture-adapted *P. falciparum* clones and isolates.9 In the cited study, the EC50 values varied between 59.4 and 1470 nmol/L, with a mean of 436 nmol/L (i.e., a range similar to that observed in our study). Tafenoquine showed a two times higher EC50 value compared with chloroquine and an approximately 20 times higher value than mefloquine. In contrast, in a *P. cynomolgi/Macaca mulatta* model, tafenoquine showed a three-fold higher blood schizontocidal activity than chloroquine, halofantrine, and mefloquine (S.K. Puri et al., unpublished data). If one takes the different methods into consideration, the EC values of tafenoquine seem to lie in about the same range in these studies, but the activity relationships to chloroquine and mefloquine differ considerably, essentially reflecting the intrinsic sensitivity pattern of the parasite species and strains. As far as the studies with *P. falciparum* are concerned, the differences may be mainly attributed to the selection of *P. falciparum* strains/clones and their relatively small number, and to a lesser extent to methodologic features.

The comparison of tafenoquine with the structurally related drug primaquine may be of particular interest. Published *in vitro* data for the blood schizontocidal activity of primaquine in *P. falciparum* show a range of EC50 values between 0.6 and 14 μmol/L.18–20 Apart from methodologic differences, our results for tafenoquine therefore showed an activity 3–67 times higher than that of primaquine. Other studies, which describe a 4–100 times higher blood schizontocidal activity of tafenoquine compared with primaquine in the *P. berghei* and *P. yoelli* mouse model and a 10 times higher activity in the *P. vivax/Aotus trivirgatus* model, tend to support these findings.3,22 In this context, it is important to note that primaquine as well as tafenoquine showed lower EC values in chloroquine-resistant strains than in chloroquine-sensitive strains.5,18 A regimen consisting of simultaneous
chloroquine-primaquine administration might therefore improve the treatment of chloroquine-resistant *P. vivax* infections.

Analogous to previous studies, no activity associations were found between tafenoquine on the one hand and chloroquine and mefloquine on the other. Although in our study were found between tafenoquine on the one hand and chloroquine-primaquine administration might therefore improve the treatment of chloroquine-resistant *P. vivax* infections.

Analogous to previous studies, no activity associations were found between tafenoquine on the one hand and chloroquine and mefloquine on the other. Although in our study artemisinin showed no correlation with tafenoquine, a significant activity relation with quinine was observed at the EC50 level. Since correlation analysis provides an insight into the mode of action and cross-sensitivities between different drugs, these results may be seen as an indication for the relative independence of tafenoquine from the sensitivity of *P. falciparum* to currently used antimalarials except for quinine.

So far little is known about the blood schizontocidal mode of action of 8-aminoquinolines. The antiplasmodial activity of primaquine has been ascribed to the competition with ubiquinone, a substance involved in the mitochondrial electron transport chain. In *Pneumocystis carinii*, tafenoquine caused ultrastructural membrane changes and damage, suggesting that oxidative impact may be a major mechanism of action.

Further *in vitro* studies in *P. falciparum* showed that tafenoquine inhibits dihydroorotate dehydrogenase to a lesser extent than hypoxanthine uptake, indicating that parasite viability is depressed by a mode of action other than the inhibition of the mitochondrial electron transport system. From this point of view, the observed correlation to quinine may give an interesting perspective. Quinine is a class 2 blood schizontocide belonging to the 4-quinolinemethanols, whose major target is known to be the iron metabolism of the parasite. The significant correlation between the activities of quinine and tafenoquine suggests the possibility that both compounds may share this mechanism at least in part, a hypothesis requiring further research.

TABLE 2

Analysis for activity correlation (Pearson) between tafenoquine and various antimalarial compounds at a 50% effective concentration (EC50) and EC90 in fresh isolates of *Plasmodium falciparum*.

<table>
<thead>
<tr>
<th>Drug compared</th>
<th>No. of isolates</th>
<th>at EC50</th>
<th>at EC90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine</td>
<td>41</td>
<td>0.73</td>
<td>0.80</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>32</td>
<td>0.1001</td>
<td>0.53</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>40</td>
<td>0.1276</td>
<td>0.2481</td>
</tr>
<tr>
<td>Artemisin</td>
<td>41</td>
<td>0.1904</td>
<td>0.2112</td>
</tr>
</tbody>
</table>

* Significant activity correlation (*P* < 0.05).

TABLE 3

Expected (Exp) and observed (Obs) effective concentration (EC) values and 95% confidence intervals (CIs) of the tafenoquine-artemisin combination (TAFART) and the mathematically derived interaction coefficient (Obs/Exp) based on parallel observations in 40 *Plasmodium falciparum* isolates.

<table>
<thead>
<tr>
<th>TAFART observed</th>
<th>95% CI</th>
<th>TAFART expected</th>
<th>Obs/Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>0.73</td>
<td>0.32–1.66</td>
<td>0.80</td>
</tr>
<tr>
<td>EC50</td>
<td>4.18</td>
<td>2.89–6.25</td>
<td>5.33</td>
</tr>
<tr>
<td>EC50</td>
<td>15.31</td>
<td>10.24–22.90</td>
<td>21.85</td>
</tr>
<tr>
<td>EC50</td>
<td>56.12</td>
<td>37.53–83.90</td>
<td>89.62</td>
</tr>
<tr>
<td>EC90</td>
<td>81.64</td>
<td>46.49–143.35</td>
<td>134.70</td>
</tr>
<tr>
<td>EC90</td>
<td>131.20</td>
<td>69.06–249.23</td>
<td>225.58</td>
</tr>
<tr>
<td>EC90</td>
<td>319.42</td>
<td>140.99–723.67</td>
<td>593.35</td>
</tr>
</tbody>
</table>

Since treatment with drug combinations is discussed as a means of slowing down the emergence and spread of resistance in falciparum malaria and of accelerating the onset of therapeutic response, artemisinin was tested as a potential partner drug for tafenoquine. The rapid onset of action, the absence of *in vivo* resistance, the good tolerability, and the affordable cost may make artemisinin derivatives very interesting candidates for such combinations. In this context, Peters cited the potentially enhancing effect of an artemisinin-primaquine combination in artemisinin-resistant strains, while in another study no interaction between tafenoquin and artemisinin was observed.

In conclusion, the results of this study suggest an interesting potential of the 8-aminoquinoline tafenoquine as a blood schizontocidal agent in the treatment of multidrug-resistant falciparum malaria. A combination with artemisinin derivatives seems to be especially promising. In addition to the enhanced blood schizontocidal activity, such combination treatment may have an impact on malaria transmission and the occurrence and spread of resistance due to the ability of the single compounds to inhibit the sporogony of *P. falciparum*. However, the potential side effects of tafenoquine, such as the production of methemoglobin and the risk of hemolysis in G6PD-deficient patients, have to be taken into consideration. This problem should be resolved by the
development of a simple, cheap, fast and reliable screening test for G6PD deficiency.

Acknowledgments: We thank SmithKlineBeecham (now GlaxoSmithKline, Worthing, West-Sussex, UK) for providing tafenoquine, and the Academy of Military Medical Sciences (Beijing, Peoples Republic of China) for providing the artemisinin standard. The assistance of the Austrian Ministry of Science and Communications is gratefully acknowledged. It enabled Michael Ramharter to participate in this study.

Financial support: Apart from a travel grant to Michael Ramharter (Austrian Ministry of Science and Communications), the study was exclusively supported by the Department of Specific Prophylaxis and Tropical Medicine, Institute of Pathophysiology, University of Vienna (Austria) and the Ministry of Public Health of Thailand.

Authors’ addresses: Michael Ramharter, Harald Noedl, Gerhard Wiedermann, and Walther H. Wernsdorfer, Department of Specific Prophylaxis and Tropical Medicine, Institute of Pathophysiology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria, Telephone 43-1-403-7122, Fax 43-1-403-8343-90. Krothongh Thimasarn, WHO-RBM Mekong, c/o WHO Representative, Ministry of Public Health, Tiwanond Road, Nonthaburi 11000, Thailand, Telephone: 66-2-288-2567, Fax: 66-2-288-3048. Gunther Wernsdorfer, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi Road, Bangkok 10400, Thailand (current address: Gleiwitzerstrasse 49, D-91058 Erlangen, Germany, Telephone and Fax: 49-9131-39988).

Reprint requests: Walther H. Wernsdorfer, Department of Specific Prophylaxis and Tropical Medicine, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria, Telephone and Fax: 43-1-879-7015, E-mail: walther.h.wernsdorfer@univie.ac.at

REFERENCES