ANALYSIS OF T HELPER CELL RESPONSES DURING INFECTION WITH LEISHMANIA AMAZONENSIS

JIAXIANG JI, JIAREN SUN, HAI QI, AND LYNN SOONG

Departments of Microbiology and Immunology, and Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas

Abstract. Most inbred strains of mice are susceptible to Leishmania amazonensis infection and develop progressive cutaneous lesions. However, the role of Th subsets in the disease and the molecular basis of pathogenesis are unclear. To address this issue, we examined the frequency of cytokine-producing CD4+ T cells and the profile of αβ T cell receptor (TCR) usage in infected BALB/c mice. At different infection stages, CD4+ cells of draining lymph nodes contained comparable frequencies of Th1 and Th2 cells, produced comparable levels of interleukin-4 (IL-4) and interferon-γ in vitro, and showed no significant bias in αβ TCR usage. However, T cells became highly polarized to a Th2 phenotype (IL-4+, IL-10+) within a few cycles of in vitro restimulation. These Th2 cells preferentially expressed Vα2, Vβ4, or Vβ8.1/8.2, and significantly exacerbated disease in cell-transferred mice. Thus, unlike a Th2-dominant phenotype seen in L. major infection, a mixed Th1/Th2 response can be maintained in L. amazonensis-infected mice via an as-yet-unidentified mechanism.

INTRODUCTION

Leishmania amazonensis is a member of the L. mexicana complex. In South American countries, it can cause a broad spectrum of clinical manifestations, ranging from single cutaneous lesions to multiple, disfiguring nodules and even visceral complications. This parasite species is described as the unique etiologic agent of anergic diffuse cutaneous leishmaniasis in Brazil, a condition that is associated with specific impairment of the cell-mediated immune response at an early stage of infection. Diseases caused by this parasite display variable abilities or no tendency to self-cure. At present, the molecular and genetic basis for the development of different clinical diseases following infection with L. amazonensis is undefined.

The contribution of host genetic backgrounds to the outcome of Leishmania infection is well described in murine cutaneous leishmaniasis caused by L. major. In this system, most inbred strains of mice (e.g., C57BL/6 and C3H) are genetically resistant to the infection and capable of mounting a Th1-dominated response. BALB/c mice, on the other hand, are highly susceptible to the infection, and develop a strong Th2 response that interferes with the activation of macrophages to a leishmanicidal state. In contrast, most inbred strains of mice examined to date are susceptible to L. amazonensis infection, developing chronic lesions that mimic those seen in cutaneous leishmaniasis patients. BALB/c mice are more susceptible to L. amazonensis and L. mexicana than are other inbred mouse strains, and have been used to examine the potential contribution of early cytokine production in the outcome of the infection. Using this mouse strain, Guevara-Mendeoza and others have shown a rapid increase of interferon-γ (IFN-γ) transcripts in draining lymph nodes (LN) at 24 hr of infection with L. mexicana. This infection, however, does not result in any elevation of interleukin-4 (IL-4) mRNA even at day 7. In accordance with this, treatment with either anti-IL-4 or anti-IFN-γ does not show a major effect on the course of L. amazonensis infection. These studies collectively suggest that multiple mechanisms may contribute to susceptibility of mice to L. amazonensis. Consistent with this view, Barral-Netto and others have demonstrated an increased production of transforming growth factor-β (TGF-β) by peritoneal macrophages and in foot tissues of L. amazonensis-infected mice, as well as an enhancement of lesion development in mice exogenously administered TGF-β. It has also been suggested that an impaired expression of IL-12 receptor β2 chain, and, consequently the insufficient activation of Th1 responses, is in part responsible for the susceptibility of mice to this parasite species.

Although CD4+ T cells are shown to be more important in the pathogenesis of L. amazonensis infection than are CD8+ T cells, there is little information on the nature and kinetic activation of Th subsets during the course of the disease. In this study, we analyzed the frequency of cytokine-producing CD4+ T cells and the amounts of cytokine production by isolated CD4+ LN T cells. To further test if a particular CD4+ T cell subset is preferentially activated during the infection, we also examined the T cell receptor (TCR) usage in CD4+ LN T cells, as well as in Th2-type cell lines generated via in vitro stimulation with amastigote antigens. The functional role of these Th2 cells in the disease outcome was examined by an adoptive cell transfer.

MATERIALS AND METHODS

Mice. Female BALB/c and C57BL/6 mice were obtained from Harlan Sprague Dawley (Indianapolis, IN) and were used when they were between six and eight weeks old. For infection, mice were inoculated subcutaneously 2 × 108 or 2 × 109 stationary-phase promastigotes of L. amazonensis in 10 μl of phosphate-buffered saline (PBS) in the hind foot.

Parasite culture and antigen preparation. Promastigotes of L. amazonensis (MHOM/BR/77/LTB0016) were cultured at 23°C in Schneider’s Drosophila medium, pH 7.3 (Gibco, Grand Island, NY), supplemented with 20% fetal bovine serum and 50 μg/ml of gentamicin. Lesion-derived amastigotes were cultured in the same medium at 32°C, except that the pH was adjusted to 5.0 and gentamicin concentration was reduced to 25 μg/ml. Promastigotes of L. major (MHOM/1S/79/strain Neal), L. chagasi (MHOM/BR/00/1669, provided by Dr. M. Wilson, University of Iowa, Iowa City, IA), and L. donovani (MHOM/IN/54/strain WR352, provided by Dr. R. Tesh, University of Texas Medical Branch, Galveston, TX) were cultured in complete Schneider’s medium. Frozen stocks of ookinetes of Plasmodium gallinaceum (8A strain) were
obtained from Dr. J. Vinetz (University of Texas Medical Branch, Galveston, TX). For antigen preparation, parasites (1 × 10^9/ml in PBS) were subjected to three rounds of freeze-and-thaw, followed by sonication for 45 min.

Antibodies and recombinant cytokines. Unless specified, all monoclonal antibodies (MAbs) specific for mouse cell surface molecules, cytokines, and recombinant cytokines were obtained from BD PharMingen (San Diego, CA). For fluorescence-activated cell sorting (FACS) analysis of TCR usage, fluorescein isothiocyanate (FITC)-conjugated MAbs specific for Vβ2, 3, 4, 5.1/5.2, 6, 7, 8.1/8.2, 8.3, 9, 10, 11, 12, 13, 14, and 17, as well as biotinylated MAbs specific for Vγ2, 3, 2, 8, and 11.1/11.2 were used. Phycoerythrin (PE)-labeled MAbs specific for IL-2, IL-4, IL-5, IL-6, IL-10, IFN-γ, tumor necrosis factor-α (TNF-α), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) were used in intracellular cytokine staining of T cells. FITC-, PE-, or Tricolor-labeled anti-CD4 MAbs, as well as labeled rat IgG1 (R3–34), IgG2a, (R35–95), and IgG2b, (R35–38) isotype controls were applied as needed. For detection of cytokine secretion by enzyme-linked immunosorbent assay (ELISA), pairs of MAbs (purified and biotinylated) specific for IL-2, IL-4, IL-10, IFN-γ, GM-CSF, and TGF-β and the corresponding recombinant cytokines were used. Rat MAb M5/114.15.2 (specific for mouse I-A^d^ and I-E^d^; TIB 120; American Type Culture Collection, Gaithersburg, MD) was used for blocking T cell proliferation in vitro.

Isolation of CD4^+^ LN T cells. At indicated time points, CD4^+^ T cells were purified from draining popliteal LN by positive selection using magnetic beads (Dynal, Lake Success, NY). Briefly, LN cells were incubated with the appropriate amount of anti-CD4 MAbs-coated beads for 20 min at 4°C under gentle shaking. The rosetted cells were collected using a magnetic separator, and CD4^+^ T cells were detached from the beads after treatment with a detachment enzyme (Dynal). Purified cell populations usually contained >97% of CD4^+^ T cells as analyzed by FACS. This purification method was used because negative selection used anti-CD8, and anti-MHC class II MAbs failed to provide a reasonable yield of CD4^+^ T cells, partially due to the expression of MHC class II molecules on some of the activated CD4^+^ T cells (J. Ji and L. Soong, unpublished data).

Generation of bone marrow-derived dendritic cells (DCs). Procedures for generating DCs were similar to those described by Inaba and others^{14} and Lutz and others.^{15} Briefly, 2 × 10^6 bone marrow cells were cultured in 100-mm bacteriological Petri dishes in 10 ml of complete Iscove’s modified Dulbecco’s medium (IMDM) that was supplemented with 10% fetal calf serum, 50 μM 2-mercaptoethanol, 1 mM sodium pyruvate, 25 μg/ml of gentamicin, and 20 ng/ml of recombinant murine GM-CSF. At day 3, 10 ml of fresh medium containing 20 ng/ml of rmGM-CSF was added to the plates. At day 6, half of the culture supernatant was aspirated and replaced with fresh medium containing rmGM-CSF. At day 8, non-adherent cells, which contained approximately 70% CD11c^+^ DCs, were used as antigen-presenting cells (APCs) in antigenic stimulation of T cells for FACS analysis.

Generation of L. amazonensis-reactive T cell lines. Procedures for generating CD4^+^ T cell lines were similar to those of Holaday and others.^{17} Briefly, mice were infected subcutaneously with 2 × 10^7 promastigotes in the hind foot. The LN cells were recovered four months after infection and were cultured (5 × 10^5) with amastigote lysates (equivalent to 2 × 10^6 parasites) in complete IMDM for seven days in 24-well plates. After centrifugation on Lymphocyte-M separation media (Cedarlane, Westbury, NY) at 2,000 rpm for 20 min, viable cells enriched at the interface were collected, adjusted to a concentration of 2 × 10^5 cells/ml, and rested in the absence of antigen for seven days. Viable cells (2 × 10^5) were restimulated with amastigote lysates in the presence of 5 × 10^5 syngeneic splenocytes. Two CD4^+^ T cell lines, designated as S1A and S2A, were generated after several cycles of stimulation-and-rest.

FACS analyses for intracellular cytokines and TCR usage. Intracellular cytokines were measured according to protocols provided by PharMingen (San Diego, CA). For mitogenic stimulation, cells were cultured with phorbol myristate acetate (PMA, 50 ng/ml) and ionomycin (500 ng/ml) for 5 hr in complete IMDM containing GolgiStop (BD PharMingen, San Diego, CA). For antigenic stimulation, cells (2.5 × 10^6) were cultured with 5 × 10^6 DCs and lysates of L. amazonensis amastigotes (equivalent to 2.5 × 10^6 parasites) for 12 hr in 24-well plates. GolgiStop was added during the last 5 hr of stimulation. Cells were incubated with normal rat IgG for 15 min to block non-specific binding sites. Cells were first stained with FITC-labeled anti-CD4 MAbs, fixed/permeabilized, and then incubated with PE-labeled anti-cytokine MAbs. For double staining of IFN-γ and IL-4-producing cells, cells were stained with a Tricolor-labeled anti-CD4 MAb and then with PE-labeled anti-cytokine MAbs. For intracellular cytokine staining by enzyme-linked immunosorbent assay (ELISA), pairs of MAbs (purified and biotinylated) specific for IL-2, IL-4, IL-10, IFN-γ, GM-CSF, and TGF-β, and the corresponding recombinant cytokines were used. Rat MAb M5/114.15.2 (specific for mouse I-A^d^ and I-E^d^; TIB 120; American Type Culture Collection, Gaithersburg, MD) was used for blocking T cell proliferation in vitro.

T cell proliferation and cytokine ELISA. T cells (10^4 or 10^5) were cultured with 5 × 10^5 irradiated syngeneic splenocytes in flat-bottomed, 96-well plates for four days in the presence of the indicated concentrations of antigens. One μCi of [^3]H-thymidine was added 18 hr before harvest. The radioactivity was counted using a direct beta counter (Matrix® 9600; Packard, Meriden, CT). Culture supernatants were collected at 24 hr for IL-2 measurement, and at 72 hr for detection of IL-4, IL-10, IFN-γ, TGF-β, and GM-CSF. Specific ELISAs were performed using pairs of MAbs and recombinant mouse cytokines. The reaction was revealed with horseradish peroxidase-conjugated streptavidin, using ABTS (Pierce, Rockford, IL) as a substrate. The assay sensitivities for IL-2, IL-4, IL-10, IFN-γ, TGF-β, and GM-CSF were 8, 4, 2, 16, 2, and 8 pg/ml, respectively.

Adaptive cell transfer and infection. Viable cells harvested seven days after rest were injected intravenously into the tail vein at a concentration of 5 × 10^6 or 10^7 cells per mouse. One day later, mice were infected subcutaneously in the hind foot with 2 × 10^7 stationary promastigotes of L. amazonensis. The increase in foot thickness was measured biweekly using a micrometer. Mice were killed at 16 weeks post-infection (wpi) to
collect draining LNs and the infected foot. Purified CD4+ LN T cells (1 × 10^5) were cultured with 5 × 10^5 irradiated, syngeneic splenocytes in the presence of parasite antigens (equivalent to 1 × 10^5 parasites). The levels of IL-4, IL-10, and IFN-γ in culture supernatants were determined by ELISA. Parasite loads in the infected foot were estimated by limiting dilution, as in our previous report. Briefly, tissue homogenates of individual mice were filtered through 40-μm cell strainers and subjected to serial 10-fold dilutions in complete Schneider’s medium in 96-well plates. After cultivation for 10 days, live parasites were scored under an inverted microscope. Results were expressed as -log parasite titer.

Statistical analysis. The significance of the differences between groups was determined by the Student’s t-test.

RESULTS

Persistence of a mixed Th1 and Th2 response throughout the course of infection with *L. amazonensis*. It has been well described in the *L. major* model that although both IFN-γ and IL-4 can be detected in LN cells within the first few days of infection, cytokine production in BALB/c mice becomes strongly polarized toward a Th2 phenotype at the onset of the disease. Failure to down-modulate IL-4 production in the host is responsible for the extremely high susceptibility of BALB/c mice to *L. major*. The molecular basis of susceptibility of most mouse strains to *L. amazonensis* remains largely unclear. To evaluate patterns of T cell differentiation during infection, we first examined cytokine profiles of CD4+ T cells by FACS analysis. Mice were infected with 2 × 10^6 promastigotes of *L. amazonensis*. Draining LNs from five mice per group were pooled and lymphocytes were stained for intracellular cytokines. At 2 wpi, CD4+ T cells produced IL-2, IFN-γ, and TNF-α (Figure 1A), but also IL-4, IL-5, IL-6, and IL-10 (Figure 1B). The percentages of CD4+ T LN cells that expressed Th1- or Th2-type cytokines were both increased at 6 wpi (the onset of measurable lesions). A similar profile of cytokine expression was maintained at 12–18 wpi, during which large lesions had been established (refer to Figure 6 for lesion development). Similar analysis using CD4+ T cells isolated from foot lesions of 6- or 18-week-infected mice also revealed a mixed profile of Th1 and Th2 responses. It is also noteworthy that in draining LN, the non-CD4+ compartment contained about 3- to 4-fold higher numbers of IFN-γ-producing cells than did the CD4+ compartment (Figure 1C), but it contained minimal IL-4-producing cells (Figure 1D). Few IL-4- and IFN-γ-double positive CD4+ T cells (< 0.6%) could be attributed to the background of intracellular staining (Figure 1E).

To examine the levels of cytokine production by parasite-specific CD4+ T cells, we isolated CD4+ LN T cells at 0, 2, 6, and 18 wpi, stimulated the cells for 72 hr with different concentrations of amastigote antigens in the presence of irradiated syngeneic splenocytes, and measured the secretion of IL-4 and IFN-γ in culture supernatants by ELISA. As shown in Figure 2, antigen-stimulated CD4+ T cells produced comparable levels of IL-4 and IFN-γ, which reached peaks at 6 wpi and were sustained to 18 wpi. The levels of cytokine production correlated with elevated concentrations of antigens in the culture (10^4–10^6 amastigote equivalent/10^7 T cells) and were specific to parasite stimulation. Together, these *ex vivo* and *in vitro* studies indicated that a mixed Th1/Th2 response was maintained in BALB/c mice throughout the course of *L. amazonensis* infection.

Analysis of T cell phenotypes following *in vitro* stimulation with *L. amazonensis* antigens. To further examine the antigenic specificity as well as *in vivo* function of CD4+ T cells, we analyzed cytokine profiles of LN cells stimulated for several rounds with amastigote antigens. As determined by ELISA, there was a strong increase in the production of IL-4 and IL-10, and a correspondent decrease in the production of IL-2 and IFN-γ, within 2–3 cycles of restimulation (Figure 3). Two stable cell lines, S1A and S2A, were generated from independent cultures. These cell lines were Th2 in nature because they produced high levels of IL-4 and IL-10, but no or minimal levels of IL-2 and IFN-γ, when stimulated with either PMA/ionomycin or antigen-pulsed DCs (Table 1). Measurable levels of GM-CSF (Table 1) and TGF-β (mean ± SD = 175 ± 4 pg/ml) were detected. To determine the antigenic
T HELPERS CELL RESPONSES TO L. AMAZONENSIS INFECTION

specificity of these T cell lines, we compared the levels of T-cell proliferation in responses to stimulation with different concentrations of promastigote lysates of L. amazonensis, L. major, L. chagasi, and L. donovani. While two cell lines could respond to antigens of all tested leishmanial species in a dose-dependent fashion (Figure 4), they did not respond to lysates of an irrelevant protozoan parasite (P. gallinaceum). These cell lines proliferated to a similar extent in response to lysates of L. amazonensis amastigotes and promastigotes, but not to parasite antigens when splenocytes of C57BL/6 mice were isolated by positive selection using magnetic beads. T cells (1 × 10⁵) were stimulated with amastigote lysates (equivalent to 10⁵–10⁶ parasites), or without antigens as a control, in the presence of 5 × 10⁵ irradiated syngeneic splenocytes for 72 hr in 24-well plates. Levels of IL-4 (A) and IFN-γ (B) in the supernatants were measured by enzyme-linked immunosorbent assay. Data are the mean ± SD of triplicate determinations. Results are representative of three separate experiments. Ag = antigen.

![Figure 2](image1.png)

Figure 2. Interleukin-4 (IL-4) and interferon-γ (IFN-γ) production by CD4+ T cells during infection with *Leishmania amazonensis*. BALB/c mice were infected as in Figure 1. CD4+ lymph node T cells were isolated by positive selection using magnetic beads. T cells (1 × 10⁵) were stimulated with amastigote lysates (equivalent to 10⁵–10⁶ parasites), or without antigens as a control, in the presence of 5 × 10⁵ irradiated syngeneic splenocytes for 72 hr in 24-well plates. Levels of IL-4 (A) and IFN-γ (B) in the supernatants were measured by enzyme-linked immunosorbent assay. Data are the mean ± SD of triplicate determinations. Results are representative of three separate experiments. Ag = antigen.

![Figure 3](image2.png)

Figure 3. Kinetic analysis of cytokine secretion during *in vitro* expansion of CD4+ T cells. Draining lymph node cells were collected from BALB/c mice at 18 weeks post-infection and were cultured (5 × 10⁶ cells/well) with amastigote lysates of *Leishmania amazonensis* (equivalent to 2 × 10⁶ parasites) in 24-well plates for the first cycle of restimulation. For the rest of the cycles, 2 × 10⁵ blast cells were stimulated with lysates in the presence of 5 × 10⁵ irradiated syngeneic splenocytes. Supernatants were collected at 24 or 72 hr for the measurement of interleukin-2 (IL-2) and interferon-γ (IFN-γ) (A), as well as IL-4 and IL-10 (B) by enzyme-linked immunosorbent assay. Values are the means of duplicate determinations. Results are representative of two separate experiments.

In *L. amazonensis*-infected mice. On the other hand, line S1A showed a strong bias toward Vβ4 and Vβ8.1/8.2 (a total of approximately 45%), whereas approximately 50% of the cells in line S2A predominantly expressed Vα2 (Figure 5). Double staining with available MAbs did not reveal any evident paring of Vα2 with the other tested Vβ chains.

The biological activity of *L. amazonensis*-reactive Th2 cell lines. To determine the role of Th2 cell lines that had persisted and expanded upon prolonged antigenic stimulation, we transferred 5 × 10⁶ or 1 × 10⁷ cells (collected at or after five cycles) into naive BALB/c mice one day prior to parasite inoculation. Usually, at week 6 of infection with 2 × 10⁷ stationary promastigotes of *L. amazonensis*, the BALB/c mice started to develop visible lesions. In mice transferred with S1A or S2A cell lines, however, lesions were visible before 4 wpi, were significantly larger than those in the control animals between 10 and 16 wpi, and contained an increased parasite load in the foot tissues (Figure 6A and B). The onset of the disease and the size of lesions correlated with the dose of cell transfer. Upon *in vitro* stimulation with parasite antigens, CD4+ LN T cells of mice transferred with S1A or S2A produced significantly higher levels of IL-4 (3.8–4.3 ng/ml) and IL-10 (3.2–3.8 ng/ml) than did those of the infection control mice (IL-4 = 1.7–2 ng/ml; IL-10 = 1.5–1.8 ng/ml). Accordingly, the levels of IFN-γ production in cells of the transferred mice were approximately 30% of those of the
control mice. Thus, these Th2 cell lines could exacerbate the disease in BALB/c mice.

DISCUSSION

Previous studies from our group and others have indicated coexistence of IFN-γ and IL-4 during L. amazonensis infection in susceptible BALB/c, C57BL/6, and C57BL/10 mice. However, these studies were centered on ELISA analyses of culture supernatants derived from splenocytes or LN cells stimulated with parasite antigens, and could not define the specific role of CD4+ T cells in disease because several different lymphocyte populations can contribute to IFN-γ production. In this study, we examined in detail the responses of CD4+ T cells to L. amazonensis infection and found comparable kinetics and percentages of CD4+ T cells expressing type-1 (IFN-γ and TNF-α) and type-2 (IL-4, -5, -6, and -10) cytokines. To address the potential concern that PMA/ionomycin may enhance cytokine production in primed T cells, irrespective of their antigenic specificity, we also analyzed CD4+ LN cells that were restimulated with parasite lysates in vitro. The frequencies of parasite-reactive, cytokine-producing CD4+ T cells were ranged from 0.1% to 1.5% in cells stimulated with antigen-pulsed splenocytes or DCs, respectively, and were consistently higher than that of isotype controls (0-0.04%). Importantly, antigen-stimulated CD4+ T cells displayed a comparable expression profile for type-1 and type-2 cytokines. To provide an independent measure of CD4+produced cytokines, we measured the secretion of IL-4 and IFN-γ by purified CD4+ LN cells in response to parasite stimulation (Figure 2). These studies indicate that there is a balanced expansion of Th1 and Th2 cells throughout the course of L. amazonensis infection. In contrast, Sommer and

Table 1

Cytokine profiles of Leishmania amazonensis-reactive CD4+ T cell lines*

<table>
<thead>
<tr>
<th></th>
<th>ELISA (pg/ml)</th>
<th>Intracellular staining (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IL-4</td>
<td>IL-5</td>
</tr>
<tr>
<td>S1A</td>
<td>5.418 ± 241</td>
<td>ND</td>
</tr>
<tr>
<td>S2A</td>
<td>5.965 ± 458</td>
<td>ND</td>
</tr>
</tbody>
</table>

Intracellular staining (%)

<table>
<thead>
<tr>
<th></th>
<th>PMA/ionomycin</th>
<th>Antigen-pulsed DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1A</td>
<td>S2A</td>
</tr>
<tr>
<td></td>
<td>84.4 ± 6.4</td>
<td>78.4 ± 7.3</td>
</tr>
<tr>
<td></td>
<td>5.2 ± 0.6</td>
<td>7.1 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>5.9 ± 0.5</td>
<td>6.1 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>88.3 ± 8.1</td>
<td>75.3 ± 7.6</td>
</tr>
<tr>
<td></td>
<td>21.3 ± 2.0</td>
<td>26.9 ± 2.0</td>
</tr>
</tbody>
</table>

*CD4+ T cell lines (S1A and S2A) were generated using a protocol of seven-day restimulation with antigens of L. amazonensis and seven-day rest. At the fourth cycle, 2 x 10^6 T cells were stimulated with parasite lysates (equivalent to 2 x 10^6 amastigotes) in the presence of 5 x 10^6 irradiated syngeneic splenocytes. Supernatants collected at 24 or 72 hr were tested for indicated cytokines by a specific enzyme-linked immunosorbent assay (ELISA). Results are representative of three experiments. The production levels of interleukin-2 (IL-2) and interferon-γ (IFN-γ) after antigen stimulation were near or below the detection sensitivity of the assay. Supernatants collected at the resting stage contained no detectable levels of tested cytokines. for intracellular staining, the receptors of cells were blocked with normal mouse and rat IgG, and the percentages of cytokine-producing cells were measured by intracellular staining and fluorescence-activated cell sorting as described in the Materials and Methods. Results represent the mean ± SD of three experiments. The frequencies of IL-2- and IFN-γ-producing cells after restimulation were less than 0.5%.

Similar patterns of cytokine production were observed at later stimulation cycles. In the absence of antigens or mitogens, no measurable levels of cytokines were detected. GM-CSF = granulocyte-macrophage-colony-stimulating factor, ND = not determined.

Figure 4. Antigen-specific proliferation of Th2 cells. S1A cells were rested for 10 days and were cultured (10^4) with 5 x 10^5 irradiated syngeneic splenocytes in the presence of indicated concentrations of promastigote lysates of Leishmania amazonensis, L. major, L. chagasi, and L. donovani for four days in 96-well plates. One μCi of [3H]-thymidine was added 18 hr before harvest, and the radioactivity was counted. Data represent the mean ± SD of triplicate determinations, and are representative of at least three separate experiments. CPM = counts per minute.

Figure 5. Analysis of T cell response (TCR) usage by CD4+ lymph node (LN) cells during infection and by Leishmania amazonensis-reactive Th2 cell lines. BALB/c mice were infected as in Figure 1. Th2 cell lines (S1A and S2A) were generated using a protocol of seven-day restimulation with amastigote lysates and seven-day rest as described in the Materials and Methods. The LN cells derived from naive or infected mice as well as Th2 cell lines, were stained with phycocerythrin-conjugated anti-CD4 monoclonal antibody (MAb) in conjunction with either the biotinylated mAbs specific for TCR α/β or fluorescein isothiocyanate-conjugated anti-CD4 antibodies. The results represent three independent experiments. Bars show the mean ± SD. Asterisks indicate statistically significant differences between cell lines and the uninfected control (*P < 0.05, **P < 0.01). wk = weeks.
The susceptible of BALB/c mice to *L. major* infection is known to be associated with a selective expansion of IL-4-secreting, disease-promoting CD4+ T cells at the first few days of infection. These cells predominantly express the Vβ4/Vα8 TCR and recognize a dominant protein known as LACK (*Leishmania* homologue of receptors for activated C kinase). More recently, it was reported that microbial antigens from the host flora can cross-prime LACK-specific T cells and that the presence of these T cells in conventional naïve mice can be attributed to the early burst of IL-4 in *L. major*-infected BALB/c mice. Interestingly, it has been noted that cells from genetically susceptible BALB/c (H-2d) mice or resistant B10.D2 (H-2b), C57BL/6 (H-2b), and C3H/HeN (H-2b) mice all show a similar expansion of Vα8/Vβ4+CD4+ cells following infection with *L. major*. To better understand the antigenic specificity of CD4+ T cells in *L. amazonensis* infection, we tested whether there was an expansion of a particular CD4+ cell subset. We did not observe a significantly biased expansion of any TCR-bearing CD4+ cells following infection with *L. amazonensis* in BALB/c (Figure 5) as well as in C57BL/6 mice (Ji J and others, unpublished data). Therefore, it appears that selective T cell expansion is more related to *Leishmania* species than to the host genetic backgrounds (MHC class II haplotypes).

The S1A line shows a strong bias toward Vβ4 and Vβ8.1/8.2, whereas the S2A line predominantly expresses Vα2 (Figure 5). This might be due to minor differences in culture conditions, as rIL-2 was included in generation of S1A line, but was excluded in that of the S2A line. It is possible that these lines are selected for the cells that grow best under the restimulation regimen, and, therefore, they may not represent the cells that are preferentially activated in animals. When defined parasite antigens are available, this issue could be addressed by examining the kinetic expansion of antigen-specific CD4+ T cells, using approaches including FACS analysis of tetramer, or immunospot assays. Given that LACK is a soluble antigen and is recognized by the host immune system when intracellular parasites are killed, we examined whether our Th2 cell lines are reactive to this antigen. When tested at a concentration of 10 μg/ml, both cell lines display relatively weak responses to *L. major* LACK protein (mean ± SD cpm = 628 ± 148) or its dominant I-A\(^d\) peptide (cpm = 862 ± 192) compared with parasite lysates (cpm = 203 ± 889). These results are consistent with recent reports, suggesting a minimal role for LACK in susceptibility of BALB/c mice to parasites in the *L. mexicana* complex and in protective responses to *L. donovani* infection in mice. Based upon accumulated evidence, we speculate that...
pathogenic CD4+ T cells in *L. amazonensis*-infected mice may recognize different sets of antigens from those of *L. major*-infected mice. Our current research effort is directed toward identifying the antigens recognized by Th2 cells. Given that these Th2 cell lines are reactive to lysates prepared from other *Leishmania* species (Figure 4), identification of relevant antigens would help us to define the molecular basis of leishmanial pathogenesis.

In summary, this study demonstrates that unlike the *L. major* model, there is no evident skewing of TCR usage among CD4+ T cells, nor a polarized Th2 response, following infection with *L. amazonensis* in mice. Investigation into why host immune responses to these two parasite species are so different would help us to understand the biology of the parasite and the pathogenesis associated with the infection.

Acknowledgments: We thank Drs. Vivian Braciale and Rolf Konig for critical reading of the manuscript and Mandelle Susman for assistance in its preparation.

Financial support: This work was supported by a grant from the National Institutes of Health (AI-43003) and by John Sealy Funds from the University of Texas Medical Branch to Lynn Soong.

Authors’ addresses: Jiaxiang Ji and Jiaren Sun, Departments of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1070. Hai Qi, Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1070. Lynn Soong, Department of Microbiology and Immunology, and Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1070.

Reprint requests: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, Medical Research Building 3.132, 301 University Boulevard, Galveston, TX 77555-1019. Telephone: 409-772-8149; Fax: 409-747-8689; E-mail: lysoong@utmb.edu.

REFERENCES

