EFFECTS OF ASYMPTOMATIC GIARDIA INTESTINALIS INFECTION ON CARBOHYDRATE ABSORPTION IN WELL-NOURISHED MEXICAN CHILDREN

SILVIA Y. MOYA-CAMARENA, NORBERTO SOTELO, AND MAURO E. VALENCIA
Centro de Investigación en Alimentación y Desarrollo, A. C. and Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, Mexico

Abstract. The aim of this study was to evaluate carbohydrate absorption in well-nourished children with asymptomatic giardiasis. Two groups were selected based on results of stool examination of 211 children attending preschool centers in Hermosillo, Sonora, Mexico: a control group of six non-infected children, and an infected group of seven children harboring *Giardia intestinalis*, without gastrointestinal symptoms of disease. Carbohydrate absorption was determined in the control group, before and after drug therapy in the infected group by the hydrogen breath test. Hydrogen production after lactose ingestion was higher in children with giardiasis compared with control group and after anti-parasite treatment; however, hydrogen production was not high enough to classify children as lactose malabsorbers by the cut-off criteria. Similar results were obtained for xylose absorption. None of the children had hydrogen increments high enough to be considered xylose malabsorbers. In conclusion, children asymptotically infected with *G. intestinalis* showed significantly higher hydrogen production. However, the biological relevance is questionable since they did not exceed cut-off criteria to classify them as carbohydrate malabsorbers.

INTRODUCTION

Giardia intestinalis is the most common intestinal parasite identified worldwide. In industrialized countries, *G. intestinalis* infection may reach a prevalence of 2–7%, whereas in developing countries the prevalence may reach as high as 20–60%. This parasite colonizes and proliferates in the upper part of the small intestine. In humans, the infection produced by *G. intestinalis* (giardiasis) may produce several symptoms such as diarrhea, abdominal discomfort, distension, flatulence, and vomiting. In addition, giardiasis may present with severe damage of the small intestine with the subsequent effects on nutrient absorption. One of the main complications of giardiasis is disaccharide (most frequently lactose) malabsorption. Because of its interference with nutrient absorption, severe giardiasis may cause malnutrition and growth retardation in children. However, many patients infected with *G. intestinalis* do not present symptoms or damage to the small intestine. The presence or absence of symptoms has been related to the strain of *G. intestinalis*, to the severity of the infection, or to the immune status of the host.

The potential consequences of asymptomatic giardiasis on nutrient absorption are particularly important in northwestern Mexico, where many children carry this parasite. However, few studies have focused on the potential effects of moderate or asymptomatic giardiasis on nutrient absorption, and thus its effects on the nutritional status of the host. Therefore, the aim of this study was to evaluate intestinal absorption of carbohydrates in well-nourished children with asymptomatic giardiasis.

MATERIALS AND METHODS

Subjects. Thirteen children 3–6 years of age from different social backgrounds in the northwestern state of Sonora, Mexico participated in the study. Participants were selected based on stool examinations of 211 children attending preschool centers located in diverse suburbs around the city of Hermosillo, Sonora, Mexico. Parents were asked to collect fresh stool samples every morning for three consecutive days. *Giardia* cysts or trophozoites and other parasites were identified by the zinc sulfate concentration method. One hundred twenty-nine (61.1%) of the 211 children screened were free of intestinal parasites, whereas in 82 children (38.9%) at least one parasite was identified. *Giardia intestinalis* was the most frequent infection (44 children, 20.9%) (Table 1). Twenty children (9.5%) were infected only with *G. intestinalis*.

From the screened population, two groups that met the selection criteria were selected based on the presence of *G. intestinalis*: 1) a control group composed of six non-infected children (4 girls and 2 boys) and 2) an infected group composed of seven children (3 girls and 4 boys) infected only with *G. intestinalis*. All participating children met the following selection criteria: 1) none had symptoms of gastrointestinal disease, such as abdominal discomfort, diarrhea, nausea, vomiting or flatulence; 2) none had received any antibiotic treatment in the three weeks preceding the study; and 3) all had to be adequate H2 producers without a bacterial overgrowth condition, as determined by the hydrogen breath test following the ingestion of lactulose and by the urinary Indican test. The study protocol was fully explained to the parents of the children, and they then provided written informed consent for the participation of their children in the study. The study protocol was approved by the internal-external Ethics Committee of the Centro de Investigación en Alimentación y Desarrollo (CIAD) (Hermosillo, Sonora, Mexico). Both groups were visited at their pre-school centers on three non-consecutive mornings for anthropometric measurements and breath samples for determination of carbohydrate absorption. In infected children, these measurements were performed before and three weeks after treatment for *G. intestinalis* infection with 25 mg of tinidazole/kg of body weight/day for two days. One and three weeks after treatment, stool examinations were performed to verify the absence of *G. intestinalis* infection by three consecutive day copro-parasitoscopic analyses.

Anthropometric measurements. Weight was measured to the nearest 50 g with a mechanical scale (Accu-weigh, Model 150TKL; ME Corporation, Sunnyvale, CA). Height was measured to the nearest 0.1 cm with a portable stadiometer (Holtain, Ltd, Crymych, United Kingdom). Nutritional status was evaluated by calculating Z scores for weight-for-height,
Infection with intestinal parasites among 211 children in Hermosillo, Sonora, Mexico screened on three consecutive days by the zinc sulfate concentration method

| Non-infected | 129 | 38.9 (32.3–45.4) |
| Infected | 82 | 9.5 (5.5–13.4) |

Production of H2 and bacterial overgrowth. Based upon the criterion of the H2 increment over the baseline ≥ 10 ppm 90 min after the lactulose dose, all participants were considered to be adequate H2 producers (Figure 1). In addition, even when significant differences after 40 and 60 min in the hydrogen increments were observed (P < 0.05), no children presented bacterial overgrowth as defined by the cut-off criteria, that is, H2 production over the baseline of less than 20 ppm within the first 20 min after lactulose intake (Figure 1). This result agreed with that of the urinary indoxyl sulfate test, in which subjects showed less than 0.14 mg of Indican/mg of creatinine excreted within a 3-hr period.

Carbohydrate absorption. After the lactose dose, H2 values over baseline were 3.6 ± 0.75 ppm in children with giardiasis, −0.85 ± 0.75 ppm in children after treatment for giardiasis, and 0.19 ± 0.81 ppm in the control group (Figure 2). Based on the established cut-off points, no lactose malabsorption was found in children infected with *G. intestinalis* or after drug treatment. Although maximum levels of H2 production were not high enough to indicate lactose malabsorption, mean at 30-min intervals up to 300 min after lactose intake. Peak H2 values of 20 ppm or more over the baseline levels at 90 min after the lactose dose were considered to indicate lactose malabsorption.

Xylose absorption. The hydrogen breath test to determine xylose absorption was performed following the same protocol described earlier in this report. The test dose was 0.3 g of xylose/kg of body weight. In addition, urinary excretion of xylose was determined with the spectrophotometric method reported by Kerstell.

Urinary Indican test. Bacterial overgrowth was also tested by the Indican (urinary indoxyl sulfate) method. This test is based on the ability of some bacteria to produce indole from tryptophan, which is further excreted in the urine as indoxyl sulfate. Indoxyl sulfate is then quantified in urine (collected after 3 hr) by using the spectrophotometric method reported by Bryan. Values of indoxyl sulfate > 0.14 mg/mg of creatinine indicate bacterial overgrowth.

Statistical analysis. Statistical analyses were performed using the NCSS Statistical Data System, version 6.0.3. Breath hydrogen production data are expressed as means ± SE. The curves of breath hydrogen concentration over baseline levels of controls and infected (before and after treatment) groups in the lactose and xylose tests were analyzed by covariance analysis adjusting for the successive time intervals after 90 min. Breath hydrogen production after 90 min is the cut-off point used for this test in both cases. Individual analysis of variance of control and infected (before and after treatment) at each time point, as well Tukey-Kramer comparison tests, were also performed to determine specific differences. Anthropometric data are expressed as means ± SD. Z scores for height, weight, and weight-for-height were compared by groups using a non-parametric Mann-Whitney test.

RESULTS

Table 2 shows the physical characteristics of the participants. The mean Z scores of infected and control children were greater than or very close to the median of the NCHS values, and none of the children had values < 2 SD, which would classify them as malnourished, according to height-for-age, weight-for-age, and weight-for-height indicators.

Carbohydrate absorption. After the lactose dose, H2 values over baseline were 3.6 ± 0.75 ppm in children with giardiasis, −0.85 ± 0.75 ppm in children after treatment for giardiasis, and 0.19 ± 0.81 ppm in the control group (Figure 2). Based on the established cut-off points, no lactose malabsorption was found in children infected with *G. intestinalis* or after drug treatment. Although maximum levels of H2 production were not high enough to indicate lactose malabsorption, mean
peak H₂ increments in control and post-treatment children were lower than those in children before treatment of giardiasis (P < 0.05).

As shown in Figure 3, breath hydrogen values over baseline in children after drug therapy were statistically lower than those observed in the infected and control groups after xylose ingestion (−4.16 ± 0.69 ppm of H₂, 2.2 ± 0.69 ppm of H₂, and 1.13 ± 0.74 ppm of H₂, respectively; P < 0.05). However, these values were below the cut-off for xylose malabsorption. In agreement with this result, there was no statistically significant difference in the percentages of xylose urinary excretion in children before and after treatment for giardiasis (34 ± 3% versus 46 ± 11%), suggesting adequate absorption of xylose.

DISCUSSION

Infection with *G. intestinalis* leads to acute/chronic diarrhea in some individuals but remains asymptomatic in others. Several studies have indicated that severe or symptomatic giardiasis may cause malabsorption of nutrients and affect the nutritional status of the host. However, few studies have reported the potential effects of moderate or asymptomatic giardiasis on nutrient absorption, and thus the effects on the nutritional status of the host.4,25–27 For instance, de Morais and others found that asymptomatic giardiasis did not affect the intestinal absorption of iron in children with iron deficiency.25 We have previously found that mild *G. intestinalis* infection did not affect energy metabolism (energy intake, basal metabolic rate, and total energy expenditure) in children.26 The results in the present study suggest that asymptomatic *G. intestinalis* infection does not interfere with ab-

TABLE 2

Morphometric analysis of the children

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Age (Months)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>Z Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W/H</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>71.29</td>
<td>23.0</td>
<td>118.4</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>72.05</td>
<td>19.5</td>
<td>110.0</td>
<td>−0.95</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>58.41</td>
<td>16.7</td>
<td>108.0</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>57.13</td>
<td>18.0</td>
<td>104.0</td>
<td>−0.65</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>75.73</td>
<td>19.0</td>
<td>118.0</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>66.92</td>
<td>22.5</td>
<td>116.0</td>
<td>0.51</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>66.9 ± 7.8</td>
<td>19.14 ± 2.5</td>
<td>112.4 ± 5.9</td>
<td>−0.02* ± 0.6</td>
</tr>
<tr>
<td>Infected</td>
<td>F</td>
<td>33.45</td>
<td>14.5</td>
<td>95.0</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>58.71</td>
<td>20.8</td>
<td>112.0</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>69.98</td>
<td>19.4</td>
<td>109.6</td>
<td>−0.83</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>68.50</td>
<td>19.4</td>
<td>110.7</td>
<td>−0.77</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>45.14</td>
<td>19.5</td>
<td>103.6</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>60.48</td>
<td>20.9</td>
<td>110.0</td>
<td>−0.04</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>61.80</td>
<td>20.6</td>
<td>109.7</td>
<td>−0.18</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>56.7 ± 13.1</td>
<td>19.3 ± 2.2</td>
<td>107.2 ± 6.0</td>
<td>0.08* ± 0.7</td>
</tr>
</tbody>
</table>

* There were no statistically significant differences between the groups (P > 0.05).
absorption of carbohydrates in well-nourished children, as determined by the cut-off criteria. Similar results were found by Gendrel and others, who reported that asymptomatic giardiasis does not increase the frequency of lactose intolerance in well-nourished children. Furthermore, Tolboom and others found that lactose malabsorption does not correlate with the presence of giardiasis, but milk intolerance manifested as diarrhea is more common in children with giardiasis than in healthy subjects. Because of the location of the disaccharidases in the intestinal brush border, any condition that damages its morphology (such as severe diarrhea), will result in a detrimental effect on these enzymes, and thus disaccharides as its morphology (such as severe diarrhea), will result in a detrimental effect on these enzymes, and thus disaccharides present in the diet. Therefore, the findings by Tolboom and others, together with the subtle defects in breath hydrogen test results we found in asymptomatic children, suggest that lactose malabsorption may be more likely associated with the lost of lactase caused by diarrhea than the direct effects of Giardia.

Giardiasis induces proliferation of intestinal bacteria that could alter the results of absorption studies. Patients infected only with Giardia have little intestinal mucosa damage and mild lactose malabsorption, while patients with additional overgrowth have severe lactose malabsorption. Similar observations were reported by Kerlin and others, who found that giardiasis does not affect carbohydrate absorption (from rice flour), whereas bacterial overgrowth impairs the absorption of carbohydrates as measured by the breath H_2 test (peak increment of 320 ppm over baseline H_2 production). The children who had bacterial overgrowth as determined by the Indican test and H_2 production after lactulose ingestion were not included in this study. However, some strains of G. intestinalis may cause lesions in the intestinal mucosa and this can affect nutrient absorption in the same way as bacterial overgrowth.

In conclusion, children asymptomatically infected with G. intestinalis showed significantly higher hydrogen production. However, the biological relevance is questionable since they did not exceed cut-off criteria to classify them as carbohydrate malabsorbers.

Acknowledgments: We thank the children, as well as their parents, school directors, and teachers, for participation in the study. We also thank Carmen Baez for expert assistance with the breath hydrogen tests, Fabiola Cuamea for excellent laboratory work, Rosa M. Cabrera and José A. Ponce for technical assistance, and Martha Espinoza and Geraldine McNeill for critical review of the manuscript.

Financial support: This work was supported by a grant from The Commission of the European Communities (contract C1/0376/0377). Fabiola Cuamea was supported by CONACyT.

Authors’ addresses: Silvia Y. Moya-Camarena (Telephone: 52-662-2892-400, Fax: 52-662-2800-094, E-mail: moyas@cascabel.cuai.mex) and Mauro E. Valencia, Centro de Investigación en Alimentación y Desarrollo, ACP Apartado Postal 1735, Hermosillo, Sonora Mexico, CP 83000. Norberto Sotelo, Hospital Infantil del Estado de Sonora, Reforma Norte entre Ocho y Once, Ley 57, Hermosillo, Sonora, Mexico CP 83100.

REFERENCES

