CASE REPORT: RECOVERY OF CALLIPHORA VICINA FIRST-INSTAR LARVAE FROM A HUMAN TRAUMATIC WOUND ASSOCIATED WITH A PROGRESSIVE NECROTIZING BACTERIAL INFECTION

LAURENCE DELHAES, BENOIT BOUREL, LAURENT SCALA, BLANDINE MUANZA, EMMANUEL DUTOIT, FRANCIS WATTEL, DIDIER GOSSET, DANIEL CAMUS, AND EDUARDO DEI-CAS

Service de Parasitologie-Mycologie, Faculté de Médecine and Intitute Pasteur de Lille, France; Institut de Médecine Légale et Sociale, Faculté de Médecine, Lille, France; Laboratoire Environnement et Santé, Faculté Libre des Sciences et Faculté Libre de Médecine, Lille, France; Service d’Urgence Respiratoire, de Réanimation Médicale et de Médecine Hyperbare, Hôpital A. Calmette, Lille, France

Abstract. Human myiasis caused by Calliphora vicina is rare in Europe. Here we report a case of C. vicina infection occurring in the traumatic leg wound of a healthy 21-year-old man. Firstly, a progressive necrotizing infection developed in the wound despite administration of antibiotics. Aeromonas hydrophila was isolated from the wound samples. Secondly, during debridement, C. vicina first-instar larvae were isolated from the wound. To our knowledge, this is the first European case of C. vicina wound myiasis associated with severe A. hydrophila infection.

Human myiasis is due to parasitic infestation of human body by larvae of the fly Brachycere Diptera, commonly known as maggots. In Europe, Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) is a very common urban species of fly closely associated with man.1 Usually larvae develop on carrion and their finding in humans in non-tropical countries is a rarity. Human myiasis caused by C. vicina have been reported on only a few occasions.2–4

CASE REPORT

The case was a healthy young man, living in the small town of Feignes, north of France. On June 7, 1999, he had a 5 meter-fall which caused a bifocal open fracture of the left shinbone with a significant muscular contusion without vascular lesion and with a multiple fracture of the left metatarsus.

The combined fractures of the tibia and fibula were treated with an external fixator. The first metatarsus fixation was accomplished with screws and bone plates. The patient was managed by daily clean dressing and antibiotherapy for possible bacterial infection (netilmicine: Netromycine1 g, per day) were instituted to prevent thrombosis by dalteparine sodique: Fragmine7500, twice a day. Hemocultures showed no growth, but Aeromonas hydrophila was isolated from the wound samples. On June 10. A necrosis injury appeared a few days later and was removed on June 16. Anemia (Hb = 7 g/dl) was treated by transfusion. On June 18, 11 days later, a complete necrosis of the antero-external muscular part of the left leg appeared. During the surgical treatment (vigorous debridement), maggots were found and Aeromonas hydrophila was again isolated from the wound. Once the larvae were removed, oxygenotherapy (2.5 ATA/100% O₂, 19 times of 90 min each) and new antibiotherapy (piperacilline + tazobactam: Tazocilline12 g and amikacine: Amiklin1 g, per day) were instituted to prevent amputation. Blood tests showed a white blood cell count of 17,000 leucocytes/mm³ with 84% segmented cells. No further complications were noted. However on June 28, 3 weeks after the injury, a below-knee amputation was performed.

DISCUSSION

A Calliphora vicina female can lay up to 300 eggs, either in small groups or as a single batch, in carrion or in wounds.1–3 First-instar larvae hatch within one day’s time or less. Under warm and otherwise favorable conditions the larvae feed for 3–4 days. The puparium is formed approximately 2–3 days later and lasts at least one week. The time it takes to develop into an adult insect depends on temperature; at 27°C it takes about 18 days.1

Adult Calliphoridae females lay eggs on fresh cadavers immediately after death under favorable conditions.1 Therefore, Calliphoridae species are often used as forensic indicators of the post-mortem interval.3 In cases of advanced decomposition, when no tissues or body fluids are available, C. vicina and other Calliphoridae can serve as alternate specimens for toxicological analysis.5–4

Also, C. vicina larvae are known agents of traumatic myiasis in man and animals.3 In Europe this diptera plays a minor role in secondary sheep myiasis.4 The cases of C. vicina human infestation that Zumpt4 reviewed were cases of intestinal and urinary myiasis. More recently, a urethral and vesicular myiasis by C. vicina4 and a case of mixed cutaneous myiasis by C. vicina and Lucilia sericata (Diptera: Calliphoridae)5 have been reported.

In the present case, the circumstances of the infestation are open to speculation. Climatic factors such as temperature and humidity are known to influence egg-laying and development of instar-larvae.9 The weather was warm when the current case occurred. All Calliphora species develop in decomposing organic matter, which explains the trend towards an occasional facultative parasitism, especially during the warm season.4 This is consistent with the cases recently reported.2,3 Contrary to patients with human myiasis caused by
C. vicina in Britain, who were probably both elderly and unwell at the time of infection, our patient was a healthy man in good general condition. However, predisposing factors such as a wound seem to play a special part, especially when necrosis injury is associated. Both aerobic bacteria and anaerobes such as A. hydrophila have been associated with traumatic wounds. Aeromonas hydrophila infection can be rapidly progressive with extensive necrosis and with gas formation. In the present case, we can assume that myiasis was favoured by bacterial necrosis injury, as C. vicina larvae are necrophagous.

Recently reported C. vicina myiasis cases show that myiasis is not exclusive to tropical lands, but occurs also in temperate European countries. Myiasis can occur especially during the warm season when there are a lot of flies. In most cases there are predisposing factors such as a wound or traumatic lesions. Therefore, myiasis should be considered as a potential etiology of wound infection complications.

Authors’ addresses: Laurence Delhaes, Service de Parasitologie-Mycologie, Faculté de Médecine, 1 place de Verdun, 59045 Lille Cedex 2 and Institut Pasteur de Lille, 1 rue du Pr. Calmette, BP 245, 59019
REFERENCES