FIRST ISOLATION OF THE RIFT VALLEY FEVER VIRUS FROM CULEX POICILIPES (DIPTERA: CULICIDAE) IN NATURE

MAWLOUTH DIALLO, LAURENCE LOCHOUARN, KHALILOU BA, AMADOU A. SALL, MIREILLE MONDO, LANG GIRAULT, AND CHRISTIAN MATHIOT
Institut Pasteur, World Health Organization Collaborating Centre for Reference and Research on Arboviruses and Hemorrhagic Fever Viruses, Dakar, Senegal; Laboratoire de Zoologie Médicale, Institut de Recherche pour le Développement (IRD ex-ORSTOM), Institut Pasteur, Dakar, Senegal

Abstract. Following the reemergence of Rift Valley fever (RVF) virus in southeastern Mauritania in 1998, an entomological survey was undertaken in the boundary area in Senegal to assess the extent of the virus circulation. During this study, RVF virus (36 strains) was isolated for the first time from Culex poicilipes in nature. The possible role of Cx. poicilipes as an RVF vector is discussed regarding its biology and ecology.

Rift Valley fever (RVF) is an African viral zoonosis transmitted by mosquitoes. In September and October 1998, hemorrhagic fever cases were reported in the Ayoun El Atrouss zone, Mauritania (Nabeth P, unpublished data). Rift Valley fever virus was diagnosed using IgM capture, reverse transcriptase-polymerase chain reaction (RT-PCR), and virus isolation at the Pasteur Institute, Dakar, Senegal. Following the confirmation of these RVF cases in Mauritania, entomological survey was carried out in Senegal along the river basin in Thille Boubacar, Kanel, Dembankane, and Diawara (Figure 1) in order to evaluate the extent of virus circulation. These localities are approximately 400 kilometers from the Mauritanian epidemic/epizootic zone.

Mosquitoes were collected using the Centers for Disease Control and Prevention (CDC) light traps with CO2 set nearby temporary ground pools and CDC light traps without CO2 set in sheepfolds or cowsheds. They were then sorted and classified into monospecific pools and stored in liquid nitrogen before virological isolation attempts were made. Isolations were performed on Vero and AP 61 (Aedes pseudoscutellaris) cell lines. Rift Valley fever virus identification was made by indirect immunofluorescence, then confirmed by complement fixation and seroneutralization tests.

In total, 31,944 mosquitoes belonging to 6 genera and 20 species were captured. Culex poicilipes and Mansonia uniformis were the most common species (Table 1). Thirty-six RVF virus strains were isolated from Cx. poicilipes captured in Diawara, the locality in which the highest density of Cx. poicilipes was obtained (Figure 2). The true infection rate was estimated to be 0.37 ± 0.06% in Diawara.

To our knowledge, this is the first isolation of RVF virus from Cx. poicilipes in nature. Among mosquitoes collected, Culex antennatus, Anopheles pharoensis, Mansonia africana and Ma. uniformis were already found naturally infected by the RVF virus. Previously, RVF virus isolations were obtained in Senegal from mosquitoes Aedes dalzieli, Aedes vexans, and Aedes ochraceus. Like most RVF virus vectors, Cx. poicilipes is a temporary-ground-pools mosquito well adapted to the Sahelian area. In Barkedji area where an entomological survey has been conducted since 1990, Cx. poicilipes is the most represented species after Ae. vexans. In this area, a high tropism of Cx. poicilipes was observed for

Figure 1. Location of the study areas.
Table 1: Mosquitoes captured in November 1998 in the Senegal River Basin

<table>
<thead>
<tr>
<th>Species</th>
<th>No.</th>
<th>No. of Pools</th>
<th>Density</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culex poicilipes†</td>
<td>14,937</td>
<td>299</td>
<td>678.9</td>
<td>46.76</td>
</tr>
<tr>
<td>Mansonia uniformis</td>
<td>14,370</td>
<td>290</td>
<td>653.2</td>
<td>44.98</td>
</tr>
<tr>
<td>Other species</td>
<td>2,637</td>
<td>95</td>
<td>119.8</td>
<td>8.25</td>
</tr>
<tr>
<td>Total</td>
<td>31,944</td>
<td>684</td>
<td>1,452</td>
<td>100</td>
</tr>
</tbody>
</table>

* Number of mosquitoes captured per trap per night.
† Percentage of the number captured for a species/total of the collection.
‡ 16 Rift Valley Fever virus strains isolated.
Other species: Anopheles ziemanni, Anopheles gambiae s.l., Anopheles pharaonis, Anopheles rapax, Anopheles wellcomei, Aedes aegypti, Aedes vexans, Culex antennatus, Culex bituminosus, Culex ethiopicus, Culex neavei, Culex quinquefasciatus, Culex tritaeniorhynchus, Mansonia africana, Mimomyia manonyaiformis, Mimomyia splendens, Uranotaenia balfouri, and Uranotaenia mayeri.

In addition, feeding preference studies conducted in the Senegal river basin have shown that Cx. poicilipes fed preferentially on humans but also on bovines, ovines, and nonidentified animals, while in Kenya its ornithophilic tendency was unequivocal. 5, 6 These considerations on Cx. poicilipes biology and ecology, as well as its experimentally demonstrated vectorial competence to RVF virus constitute clues pointing to the vector role of the species in RVF virus transmission cycles.

Rift Valley fever virus isolations in Mauritania and Senegal in 1998 were evidence that the virus had emerged at the same period in several locations. Comparable situations were also observed with the 1993 RVF virus circulation in Senegal, Mauritania and Egypt 7, 8, 9 and with the recent outbreak in Kenya and Somalia in 1997–1998. 10 At least two hypotheses could explain this widespread RVF virus circulation. The first is the possible virus diffusion from an infected area to a receptive one. Human and livestock movements represent a likely origin of this virus diffusion. Regarding the ornithophilic tendency of Cx. poicilipes, the role of birds in RVF virus dissemination merit more thorough investigation, even if some studies invalidated their reservoir role. 11 In contrast, the vectors’ role in RVF virus propagation could not be taken into account because of their reduced dispersal activity (e.g., 250 m around the breeding site for Aedes mcintoshi). 12 Like Ae. mcintoshi, Cx. poicilipes seems to have a limited activity around temporary ground pools, since in Diawara, no Cx. poicilipes specimen was captured in domestic cowsheds. The second hypothesis is the simultaneous emergence of the virus from enzootic maintenance cycles in different geographical areas. In favor of this hypothesis, studies in Eastern Africa have shown that RVF virus is subject to inter-epizootic transovarial maintenance by Aedes mosquitoes and that the virus emergence would be dependent on climatic changes. 13, 14 In West Africa factors involved in the virus emergence are still unclear.

Ongoing studies on the genetic variability of strains isolated in Mauritania and Senegal might be expected to provide further insights into the epidemiology of the virus in West Africa.

Acknowledgments: We thank Didier Fontenille for valuable comments on the manuscript, Paul Hipperson for editorial assistance, and Yaya Thiogane, Taky Diop, and Mamoudou Diallo for field-work assistance.

Financial support: This work was financed by the Institut Pasteur de Dakar and by the Institut de Recherche pour le Developpement (IRD ex-ORSTOM).

Authors’ address: Mawlouth Diallo, Laurence Lochouarn, Khalilou Ba, Laboratoire de Zoologie Medicale, Institut de Recherche pour le Developpement (IRD, ex-ORSTOM), Institut Pasteur, B.P. 220, Dakar, Senegal. Christian Mathiot, Amadou Alpha Sall, Mireille Mondo, Lang Girault, Unité des Arbovirus et des Virus de Fiévres Hemorragiques, Institut Pasteur, B.P. 220 Dakar Senegal.

Reprint requests: Mawlouth Diallo, Laboratoire IRD (ex-ORSTOM) de Zoologie Medicale, Institut Pasteur, B.P. 220, Dakar, Senegal, Fax: (221) 839 92 10, E-mail: diallo@pasteur.sn.

REFERENCES

12. Limthicum KJ, Bailey CL. 1985. Observation on the dispersal...
