- Home
- The American Journal of Tropical Medicine and Hygiene
- Previous Issues
- Volume 85, Issue 1, 2011
The American Journal of Tropical Medicine and Hygiene - Volume 85, Issue 1, 2011
Volume 85, Issue 1, 2011
- Articles
-
-
Incidence of Bacteremic Melioidosis in Eastern and Northeastern Thailand
Abstract.Burkholderia pseudomallei, the causative agent of melioidosis, is endemic in northeastern Thailand. Population-based disease burden estimates are lacking and limited data on melioidosis exist from other regions of the country. Using active, population-based surveillance, we measured the incidence of bacteremic melioidosis in the provinces of Sa Kaeo (eastern Thailand) and Nakhon Phanom (northeastern Thailand) during 2006–2008. The average annual incidence in Sa Kaeo and Nakhon Phanom per 100,000 persons was 4.9 (95% confidence interval [CI] = 3.9–6.1) and 14.9 (95% CI = 13.3–16.6). The respective population mortality rates were 1.9 (95% CI = 1.3–2.8) and 4.4 (95% CI = 3.6–5.3) per 100,000. The case-fatality proportion was 36% among those with known outcome. Our findings document a high incidence and case fatality proportion of bacteremic melioidosis in Thailand, including a region not traditionally considered highly endemic, and have potential implications for clinical management and health policy.
-
Molecular Characterization of Clinical Burkholderia pseudomallei Isolates from India
Abstract.Multilocus sequence typing of seven isolates of Burkholderia pseudomallei from India showed considerable diversity, with six different sequence types. Possible dissemination of melioidosis by historical trading routes is supported by links to strains from Southeast Asia, China, and Africa and the presence of the Burkholderia mallei allele of the bimA gene.
-
Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007
Abstract.Ehrlichia chaffeensis causes human monocytic ehrlichiosis, and Anaplasma phagocytophilum causes human granulocytic anaplasmosis. These related tick-borne rickettsial organisms can cause severe and fatal illness. During 2000–2007, the reported incidence rate of E. chaffeensis increased from 0.80 to 3.0 cases/million persons/year. The case-fatality rate was 1.9%, and the hospitalization rate was 49%. During 2000–2007, the reported incidence of A. phagocytophilum increased from 1.4 to 3.0 cases/million persons/year. The case-fatality rate was 0.6%, and the hospitalization rate was 36%. Rates among female patients were lower than among male patients for ehrlichiosis (rate ratio = 0.68) and anaplasmosis (rate ratio = 0.70). Most (80%) ehrlichiosis and anaplasmosis cases met only a probable case definition, although, use of a polymerase chain reaction to confirm infections increased during 2000–2007. Heightened reporting of these diseases will likely continue with improving recognition, changing surveillance practices, and appropriate application of diagnostic assays.
-
Contribution of Dengue Fever to the Burden of Acute Febrile Illnesses in Papua New Guinea: An Age-Specific Prospective Study
Abstract.Malaria is a major contributor to the burden of febrile illnesses in Papua New Guinea (PNG). Dengue fever (DF) is likely to contribute; however, its epidemiology in PNG is poorly understood. We performed a prospective age-stratified study in outpatient clinics investigating the prevalence of DF; 578 patients were enrolled, and 317 patients with a negative rapid diagnostic test (RDT) for malaria were tested for dengue. Malaria was confirmed in 52% (301/578, 95% confidence interval [CI] = 48–56%), DF was diagnosed in 8% (46/578, 95% CI = 6–10%), and 40% (95% CI = 36–44%) had neither diagnosis. Among the 317 malaria RDT-negative patients, 14% (45/317, 95% CI = 10–18%) had DF. The seroprevalence of dengue immunoglobulin G (IgG) was 83% (204/247, 95% CI = 78–87%), and no dengue hemorrhagic fever was seen. This study provides good evidence for the first time that DF is common in PNG and is responsible for 8% of fever episodes. The common occurrence of DF in a population with presumed previous exposure to dengue is an important observation.
-
Epidemiologic Trends of Rabies in Domestic Animals in Southern Thailand, 1994–2008
Authors: Anyarat Thiptara, Edward R. Atwill, Wandee Kongkaew and Bruno B. ChomelAbstract.Rabies and associated risk factors in dogs, cats and cattle (n = 3,454) in southern Thailand during 1994–2008 were evaluated by using a mixed-effect logistic regression model. Overall prevalence was 48%. In dogs, odds of being rabid were 1.7 times higher in unvaccinated dogs than in vaccinated dogs and two times higher in dogs with bite history than in dogs with no known bite history. Similarly, aggressive dogs were more likely to be rabid than non-aggressive dogs. In cattle, aggression, pharyngeal paralysis, hyperactivity, and depression were clinical signs associated with being rabid. Annual fluctuations of the species-specific prevalence of rabies is suggestive of a positive correlation between canine and either feline (r = 0.60, P = 0.05) or bovine rabies (r = 0.78, P = 0.004). Insufficient vaccination coverage led to maintenance of rabies, which could be easily controlled by increased vaccine coverage and public education.
-
Assessment of the Epidemiology and Burden of Measles in Southern Mozambique
Abstract.Measles has been a major killer among vaccine-preventable diseases in children < 5 years of age in developing countries. Despite progress in global efforts to reduce mortality, measles remains a public health problem. Hospital-based measles surveillance was conducted in Manhica, Mozambique (July 2001–September 2004). Suspected cases and community-based controls were enrolled, and blood was collected for immunoglobulin M (IgM) confirmation. Two hundred fifty-three suspected cases and 477 controls were enrolled, with 85% (216 of 253) cases reported during a measles outbreak. Measles-IgM confirmation was 30% among suspected cases and 5% in controls. Fifty-eight percent (14 of 24) of laboratory-confirmed cases had records indicating previous measles vaccination. Mortality was 3% (8 of 246) among cases and 1% among controls (6 of 426). Forty-five percent (33 of 74) of cases were < 24 months of age and 22% occurred in infants < 9 months of age and were associated with a high case-fatality rate (25%). Our data suggest that improved diagnostics, new tools to protect infants < 9 months of age, and a supplemental dose of measles vaccine could assist measles control.
-
Susceptibility of Vaccinia Virus to Chemical Disinfectants
Abstract.Vaccinia virus (VACV) is the cause of bovine vaccinia (BV), an emerging zoonotic disease that affects dairy cows and milkers. Some chemical disinfectants have been used on farms affected by BV to disinfect cow teats and milkers' hands. To date, there is no information about the efficacy of disinfectants against VACV. Therefore, this study aimed to assess the virucidal activity of some active disinfectants commonly used in the field. Sodium hypochlorite, quaternary ammonium combined with chlorhexidine, and quaternary ammonium combined with glutaraldehyde were effective in inactivating the virus at all concentrations tested. Iodine and quaternary ammonium as the only active component were partially effective. The presence of bovine feces as organic matter and light decreased the effectiveness of sodium hypochlorite. These results show that an appropriated disinfection and asepsis of teats and hands may be helpful in the control and prevention of BV and other infections with VACV.
-
Serologic Evidence of Arboviral Infections among Humans in Kenya
Abstract.Outbreaks of arthropod-borne viral infections occur periodically across Kenya. However, limited surveillance takes place during interepidemic periods. Using serum samples obtained from asymptomatic persons across Kenya in 2000–2004, we assessed (by indirect immunofluorescent assay) prevalence of IgG against yellow fever virus (YFV), West Nile virus (WNV), tick-borne encephalitis virus (TBEV), dengue virus serotypes 1–4 (DENV1-4), and chikungunya virus (CHIKV). Older persons on the Indian Ocean coast were more likely to be seropositive than children inland: YFV = 42% versus 6%, WNV = 29% versus 6%, TBEV = 16% versus 6%, DENV-1 = 63% versus 9%, DENV-2 = 67% versus 7%, DENV-3 = 55% versus 6%, DENV-4 = 44% versus 8%, and CHIKV = 37% versus 20%. Among inland samples, children in lowlands were more likely to be seropositive for CHIKV (42% versus 0%) than children in highlands. In Kenya, transmission of arboviral infection continues between known epidemics and remains common across the country.
-
Distribution and Phylogenetic Comparisons of a Novel Mosquito Flavivirus Sequence Present in Culex tarsalis Mosquitoes from Western Canada with Viruses Isolated in California and Colorado
Abstract.In a previous study, a new flavivirus genome sequence was identified in Culex tarsalis mosquitoes obtained in Alberta, Canada and was shown to be genetically related to but distinct from members of the insect-specific flaviviruses. Nonstructural protein 5–encoding sequences amplified from Cx. tarsalis pools from western Canada have shown a high similarity to genome sequences of novel flaviviruses isolated from mosquitoes in California and Colorado. Despite wide distribution of this virus, designated Calbertado virus, strains demonstrate a high degree of nonstructural protein 5 nucleotide (> 90%) and amino acid (> 97%) identity. The ecology and geographic range of Calbertado virus warrants further study because it may potentially influence transmission of mosquito-borne flaviviruses, including important human pathogens such as West Nile and Saint Louis encephalitis viruses.
-
Insect-Specific Flaviviruses from Culex Mosquitoes in Colorado, with Evidence of Vertical Transmission
Authors: Bethany G. Bolling, Lars Eisen, Chester G. Moore and Carol D. BlairAbstract.Mosquitoes were collected in Colorado during 2006 and 2007 to examine spatial and seasonal patterns of risk for exposure to Culex vectors and West Nile virus. We used universal flavivirus primers to test pools of Culex mosquitoes for viral RNA. This led to the detection and subsequent isolation of two insect-specific flaviviruses: Culex flavivirus (CxFV), which was first described from Japan, and a novel insect flavivirus, designated Calbertado virus (CLBOV), which has also been detected in California and Canada. We recorded both viruses in Cx. tarsalis and Cx. pipiens from Colorado. Furthermore, quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed the presence of CxFV RNA in Cx. pipiens eggs and larvae from a laboratory colony established in 2005 and naturally infected with CxFV, suggesting vertical transmission as a means of viral maintenance in natural Culex populations. Finally, we present phylogenetic analyses of the relationships between insect-specific flaviviruses and other selected flaviviruses.
-
West Nile and Usutu Viruses in Mosquitoes in Spain, 2008–2009
Abstract.West Nile virus lineage 1 (similar to the strains obtained from golden eagles in Spain, 2007) and Usutu virus (similar to the strains obtained from Culex pipiens in Spain, 2006) were detected in pools from Culex perexiguus collected in southern Spain in 2008 and 2009, respectively. This is the first detection and isolation of West Nile virus lineage 1 from mosquitoes in Spain.
-
Vector Competence of New Zealand Mosquitoes for Selected Arboviruses
Authors: Laura D. Kramer, Pam Chin, Rachel P. Cane, Elizabeth B. Kauffman and Graham MackerethAbstract.New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission.
- Top
-
- Letter to the Editor
- Corrections
-
Volumes & issues
-
Volume 98 (2018)
-
Volume 97 (2017)
-
Volume 96 (2017)
-
Volume 95 ([2016, 2017])
-
Volume 94 (2016)
-
Volume 93 (2015)
-
Volume 92 (2015)
-
Volume 91 (2014)
-
Volume 90 (2014)
-
Volume 89 (2013)
-
Volume 88 (2013)
-
Volume 87 (2012)
-
Volume 86 (2012)
-
Volume 85 (2011)
-
Volume 84 (2011)
-
Volume 83 (2010)
-
Volume 82 (2010)
-
Volume 81 (2009)
-
Volume 80 (2009)
-
Volume 79 (2008)
-
Volume 78 (2008)
-
Volume 77 (2007)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2006)
-
Volume 73 (2005)
-
Volume 72 (2005)
-
Volume 71 (2004)
-
Volume 70 (2004)
-
Volume 69 (2003)
-
Volume 68 (2003)
-
Volume 67 (2002)
-
Volume 66 (2002)
-
Volume 65 (2001)
-
Volume 64 (2001)
-
Volume 63 (2000)
-
Volume 62 (2000)
-
Volume 61 (1999)
-
Volume 60 (1999)
-
Volume 59 (1998)
-
Volume 58 (1998)
-
Volume 57 (1997)
-
Volume 56 (1997)
-
Volume 55 (1996)
-
Volume 54 (1996)
-
Volume 53 (1995)
-
Volume 52 (1995)
-
Volume 51 (1994)
-
Volume 50 (1994)
-
Volume 49 (1993)
-
Volume 48 (1993)
-
Volume 47 (1992)
-
Volume 46 (1992)
-
Volume 45 (1991)
-
Volume 44 (1991)
-
Volume 43 (1990)
-
Volume 42 (1990)
-
Volume 41 (1989)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1987)
-
Volume 35 (1986)
-
Volume 34 (1985)
-
Volume 33 (1984)
-
Volume 32 (1983)
-
Volume 31 (1982)
-
Volume 30 (1981)
-
Volume 29 (1980)
-
Volume 28 (1979)
-
Volume 27 (1978)
-
Volume 26 (1977)
-
Volume 25 (1976)
-
Volume 24 (1975)
-
Volume 23 (1974)
-
Volume 22 (1973)
-
Volume 21 (1972)
-
Volume 20 (1971)
-
Volume 19 (1970)
-
Volume 18 (1969)
-
Volume 17 (1968)
-
Volume 16 (1967)
-
Volume 15 (1966)
-
Volume 14 (1965)
-
Volume 13 (1964)
-
Volume 12 (1963)
-
Volume 11 (1962)
-
Volume 10 (1961)
-
Volume 9 (1960)
-
Volume 8 (1959)
-
Volume 7 (1958)
-
Volume 6 (1957)
-
Volume 5 (1956)
-
Volume 4 (1955)
-
Volume 3 (1954)
-
Volume 2 (1953)
-
Volume 1 (1952)
-
Volume s1-31 (1951)
-
Volume s1-30 (1950)
-
Volume s1-29 (1949)
-
Volume s1-28 (1948)
-
Volume s1-27 (1947)
-
Volume s1-26 (1946)
-
Volume s1-25 (1945)
-
Volume s1-24 (1944)
-
Volume s1-23 (1943)
-
Volume s1-22 (1942)
-
Volume s1-21 (1941)
-
Volume s1-20 (1940)
-
Volume s1-19 (1939)
-
Volume s1-18 (1938)
-
Volume s1-17 (1937)
-
Volume s1-16 (1936)
-
Volume s1-15 (1935)
-
Volume s1-14 (1934)
-
Volume s1-13 (1933)
-
Volume s1-12 (1932)
-
Volume s1-11 (1931)
-
Volume s1-10 (1930)
-
Volume s1-9 (1929)
-
Volume s1-8 (1928)
-
Volume s1-7 (1927)
-
Volume s1-6 (1926)
-
Volume s1-5 (1925)
-
Volume s1-4 (1924)
-
Volume s1-3 (1923)
-
Volume s1-2 (1922)
-
Volume s1-1 (1921)