- Home
- The American Journal of Tropical Medicine and Hygiene
- Previous Issues
- Volume 78, Issue 4, 2008
The American Journal of Tropical Medicine and Hygiene - Volume 78, Issue 4, 2008
Volume 78, Issue 4, 2008
- Articles
-
-
Association of pfcrt But Not pfmdr1 Alleles with Chloroquine Resistance in Iranian Isolates of Plasmodium falciparum
This study was designed to analyze the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) mutations as markers of chloroquine (CQ) resistance in 200 blood samples collected from malaria patients in south-eastern Iran during 2002–2005. Among these, 25 (post-treatment) fulfilled the 28-day follow-up study. A high number of Iranian P. falciparum (97%) strains harbored quadruple mutations at codons 76T, 220S, 326D, and 356L. All post-treatment isolates harbored the mutant allele 76T, but low rates of the mutant allele 86Y (44%) of the pfmdr1 gene were detected. No wild haplotype of pfcrt (72-CVMNKAQNIR-371) was found in post-treatment samples; however, 56% of clinical “failure” samples carried the wild type of pfmdr1 (NYSND). The present results suggest a strong association between pfcrt 76T, but not pfmdr1 86Y mutation and in vivo CQ resistance. Furthermore, we found the CQ resistance-associated SVMNT haplotype, which previously had been seen in South American isolates. Although Iran is located more proximally to Southeast Asia than to South America, no CQ resistance-associated CVIET haplotye has been observed in this region. Therefore, these results were not consistent with the earlier presumed spread of CQR parasites from Southeast Asia to Africa via the Indian subcontinent. In conclusion, P. falciparum mutations associated with resistance to CQ are abundant in south-eastern Iran and this finding strongly supports that CQ as the first line drug is inadequate for treatment of uncomplicated falciparum malaria in Iran.
-
Pharmacokinetics of Dihydroartemisinin in a Murine Malaria Model
More LessPharmacokinetic properties of dihydroartemisinin (DHA) were determined in mice given 100 mg/kg intraperitoneal DHA. Half-life, CL/F, and V/F were 25 min, 61.3 L/hr/kg, and 36.3 L/kg in malaria-infected mice and 19 min, 50.9 L/hr/kg, and 23.0 L/kg in controls. These data are valuable for pharmacokinetic–pharmacodynamic evaluations of DHA in murine models.
-
Detection of New Babesia microti-like Parasites in a Rhesus Monkey (Macaca mulatta) with a Suppressed Plasmodium cynomolgi Infection
More LessA new type of piroplasm, phylogenetically closest to Babesia microti-like parasites previously detected in Eurasian red squirrels (Sciurus vulgaris orientis), was identified in a rhesus monkey (Macaca mulatta) imported from China. After challenge with Plasmodium cynomolgi M strain blood-stage parasites, the rhesus monkey repeatedly showed markedly reduced levels of Plasmodium parasitemia when compared with animals not infected with this organism.
-
Malaria and Hepatocystis Species in Wild Macaques, Southern Thailand
Southeast Asian macaques are natural hosts for a number of nonhuman primate malaria parasites; some of these can cause diseases in humans. We conducted a cross-sectional survey by collecting 99 blood samples from Macaca fascicularis in southern Thailand. Giemsa-stained blood films showed five (5.1%) positive samples and six (6.1%) isolates had positive test results by polymerase chain reaction. A phylogenetic tree inferred from the A-type sequences of the small subunit ribosomal RNA gene confirmed Plasmodium inui in five macaques; one of these macaques was co-infected with P. coatneyi. Hepatocystis, a hemoprotozoan parasite transmitted by Culicoides, was identified in an isolate that was confirmed by analysis of mitochondrial cytochrome b sequences. All malaria-infected monkeys lived in mangrove forests, but no infected monkeys were found in an urban area. These findings indicate regional differences in malaria distribution among these macaques, as well as differences in potential risk of disease transmission to humans.
-
Combining Mosquito Vector and Human Disease Data for Improved Assessment of Spatial West Nile Virus Disease Risk
Assessments of spatial risk of exposure to vector-borne pathogens that combine vector and human disease data are needed for areas encompassing large tracts of public land with low population bases. We addressed this need for West Nile virus (WNV) disease in the northern Colorado Front Range by developing not only a spatial model for entomological risk of exposure to Culex tarsalis WNV vectors and an epidemiological risk map for WNV disease but also a novel risk-classification index combining data for these independently derived measures of entomological and epidemiological risk. Risk of vector exposure was high in the densely populated eastern plains portion of the Front Range but low in cooler montane areas to the west that are sparsely populated but used heavily for recreation in the summer. The entomological risk model performed well when applied to the western, mountainous part of Colorado and validated against epidemiologic data.
-
First Isolation of West Nile Virus in the Caribbean
A sentinel chicken program for West Nile virus (WNV) surveillance was initiated in July 2006 in eastern Puerto Rico, yielding the first seroconversions on June 4, 2007. WNV was isolated from sentinel chicken serum and mosquito pools (Culex nigripalpus, Culex bahamensis) for the first time in Tropical America. Preliminary sequence analysis of the prM and E genes revealed a 1-amino acid difference (V159A) between the Puerto Rican 2007 and the NY99. This mutation has been observed in the current dominant clade circulating in the United States. Sentinel chicken surveillance was a useful tool for the detection of West Nile virus in the tropics.
-
Choclo Virus Infection in the Syrian Golden Hamster
More LessAndes virus and Choclo virus are agents of hantavirus pulmonary syndrome. Andes virus in hamsters almost always causes a disease that is pathologically indistinguishable from fatal hantavirus pulmonary syndrome. The purpose of this study was to assess the pathogenicity of Choclo virus in hamsters. None of 18 hamsters infected with Choclo virus exhibited any symptom of disease. No evidence of inflammation or edema was found in the lungs of the 10 animals killed on days 7, 9, 11, 13, and 16 post-inoculation or in the lungs of the 8 animals killed on day 28 post-inoculation; however, hantavirus antigen was present in large numbers of endothelial cells in the microvasculature of the lungs of the animals killed on days 7, 9, 11, and 13 post-inoculation. These results suggest that infection in the microvasculature of lung tissue alone does not result in the life-threatening pulmonary edema in hamsters infected with Andes virus.
-
Dhori Virus (Orthomyxoviridae: Thogotovirus) Infection of Mice Produces a Disease and Cytokine Response Pattern Similar to That of Highly Virulent Influenza A (H5N1) Virus Infection in Humans
Mice infected with Dhori virus (DHOV) develop a fulminant, systemic, and uniformly fatal illness that has many of the clinical and pathologic findings seen in H5N1 influenza A virus infection. However, the role of host’s immune response in DHOV infection remains unclear. In this study, the concentrations of 23 inflammatory cytokines and chemokines were measured in the liver, lungs, and sera of mice during the course of DHOV infection. Liver function, level of viremia, and hematologic response were also monitored. Infected animals exhibited significant leucopenia and lymphopenia, which directly correlated with the disease progression. High yields of infectious virus along with strikingly elevated expression of various inflammatory mediators, including tumor necrosis factor (TNF)-α, inter-leukin (IL)-1, IL-6, IL-10, macrophage inflammatory protein (MIP)-1α, manocyte chemoattractant protein (MCP)-1, and interferon (IFN)- α, indicate that these responses play an important role in the observed disease and pathology. The overall clinical, pathologic, and immunologic responses of ICR mice to DHOV infection closely resemble those described for highly virulent influenza A virus infection in humans, thereby offering a realistic, safe, and alternative animal model for studying the pathogenesis and treatment of highly pathogenic avian influenza virus.
-
Limited Interdecadal Variation in Mosquito (Diptera: Culicidae) and Avian Host Competence for Western Equine Encephalomyelitis Virus (Togaviridae: Alphavirus)
More LessHistorically, western equine encephalomyelitis virus (WEEV) caused large equine and human epidemics in the Americas from Canada into Argentina. Despite recent enhanced surveillance for West Nile virus, there have been few reports of equine or human cases and little documented enzootic activity of WEEV. During the past three years, WEEV has been active again in California, but without human or equine cases. In the current study, we compared host and vector competence of representative WEEV isolates made during each decade over the past 60 years using white-crowned sparrows, house sparrows, and Culex tarsalis Coquillett as representative hosts. Results indicated limited time-related change in virulence among WEEV strains in birds and little difference in vector competence in Cx. tarsalis. Although temporal and spatial genetic changes have been documented, these seem to present limited phenotypic change in host competence and cannot explain the absence of equine and human cases.
-
Rocky Mountain Spotted Fever in Argentina
We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003–2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.
-
Volumes & issues
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2018)
-
Volume 97 (2017)
-
Volume 96 (2017)
-
Volume 95 ([2016, 2017])
-
Volume 94 (2016)
-
Volume 93 (2015)
-
Volume 92 (2015)
-
Volume 91 (2014)
-
Volume 90 (2014)
-
Volume 89 (2013)
-
Volume 88 (2013)
-
Volume 87 (2012)
-
Volume 86 (2012)
-
Volume 85 (2011)
-
Volume 84 (2011)
-
Volume 83 (2010)
-
Volume 82 (2010)
-
Volume 81 (2009)
-
Volume 80 (2009)
-
Volume 79 (2008)
-
Volume 78 (2008)
-
Volume 77 (2007)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2006)
-
Volume 73 (2005)
-
Volume 72 (2005)
-
Volume 71 (2004)
-
Volume 70 (2004)
-
Volume 69 (2003)
-
Volume 68 (2003)
-
Volume 67 (2002)
-
Volume 66 (2002)
-
Volume 65 (2001)
-
Volume 64 (2001)
-
Volume 63 (2000)
-
Volume 62 (2000)
-
Volume 61 (1999)
-
Volume 60 (1999)
-
Volume 59 (1998)
-
Volume 58 (1998)
-
Volume 57 (1997)
-
Volume 56 (1997)
-
Volume 55 (1996)
-
Volume 54 (1996)
-
Volume 53 (1995)
-
Volume 52 (1995)
-
Volume 51 (1994)
-
Volume 50 (1994)
-
Volume 49 (1993)
-
Volume 48 (1993)
-
Volume 47 (1992)
-
Volume 46 (1992)
-
Volume 45 (1991)
-
Volume 44 (1991)
-
Volume 43 (1990)
-
Volume 42 (1990)
-
Volume 41 (1989)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1987)
-
Volume 35 (1986)
-
Volume 34 (1985)
-
Volume 33 (1984)
-
Volume 32 (1983)
-
Volume 31 (1982)
-
Volume 30 (1981)
-
Volume 29 (1980)
-
Volume 28 (1979)
-
Volume 27 (1978)
-
Volume 26 (1977)
-
Volume 25 (1976)
-
Volume 24 (1975)
-
Volume 23 (1974)
-
Volume 22 (1973)
-
Volume 21 (1972)
-
Volume 20 (1971)
-
Volume 19 (1970)
-
Volume 18 (1969)
-
Volume 17 (1968)
-
Volume 16 (1967)
-
Volume 15 (1966)
-
Volume 14 (1965)
-
Volume 13 (1964)
-
Volume 12 (1963)
-
Volume 11 (1962)
-
Volume 10 (1961)
-
Volume 9 (1960)
-
Volume 8 (1959)
-
Volume 7 (1958)
-
Volume 6 (1957)
-
Volume 5 (1956)
-
Volume 4 (1955)
-
Volume 3 (1954)
-
Volume 2 (1953)
-
Volume 1 (1952)
-
Volume s1-31 (1951)
-
Volume s1-30 (1950)
-
Volume s1-29 (1949)
-
Volume s1-28 (1948)
-
Volume s1-27 (1947)
-
Volume s1-26 (1946)
-
Volume s1-25 (1945)
-
Volume s1-24 (1944)
-
Volume s1-23 (1943)
-
Volume s1-22 (1942)
-
Volume s1-21 (1941)
-
Volume s1-20 (1940)
-
Volume s1-19 (1939)
-
Volume s1-18 (1938)
-
Volume s1-17 (1937)
-
Volume s1-16 (1936)
-
Volume s1-15 (1935)
-
Volume s1-14 (1934)
-
Volume s1-13 (1933)
-
Volume s1-12 (1932)
-
Volume s1-11 (1931)
-
Volume s1-10 (1930)
-
Volume s1-9 (1929)
-
Volume s1-8 (1928)
-
Volume s1-7 (1927)
-
Volume s1-6 (1926)
-
Volume s1-5 (1925)
-
Volume s1-4 (1924)
-
Volume s1-3 (1923)
-
Volume s1-2 (1922)
-
Volume s1-1 (1921)