1921
Volume 88, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Dengue hemorrhagic fever is characterized by a unique vascular leakage syndrome. The mechanisms of endothelial barrier dysfunction in dengue hemorrhagic fever are not well understood. We examined the modulation of endothelial barrier function in dengue virus type 2 (DENV2) infections using primary human umbilical vein endothelial cells. We demonstrated that the increase in endothelial barrier function within 72 hours after DENV2 infection is mediated by type I interferon–dependent CD73 up-regulation. After 72 hours, DENV2 slowed the recovery of endothelial barrier function in response to tumor necrosis factor-α or vascular endothelial growth factor. This phenomenon was likely caused by type I interferon receptor signaling inhibition and lower CD73 levels in DENV2-infected endothelial cells. Our findings suggest that during DENV2 infection, endothelial barrier homeostasis is maintained by a balance between pro-inflammatory and pro-angiogenic cytokines, and type I interferon–dependent CD73 expression and activity.

[open-access] This is an Open Access article distributed under the terms of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.12-0474
2013-01-09
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/88/1/89.html?itemId=/content/journals/10.4269/ajtmh.2012.12-0474&mimeType=html&fmt=ahah

References

  1. Initiative DV, 2012. Disease Burden. Available at: http://www.denguevaccines.org/disease-burden. Accessed May 7, 2012.
    [Google Scholar]
  2. Henchal EA, Putnak JR, 1990. The dengue viruses. Clin Microbiol Rev 3: 376396.[Crossref]
    [Google Scholar]
  3. Dewi BE, Takasaki T, Kurane I, 2004. In vitro assessment of human endothelial cell permeability: effects of inflammatory cytokines and dengue virus infection. J Virol Methods 121: 171180.[Crossref]
    [Google Scholar]
  4. Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I, 2004. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 85: 18011813.[Crossref]
    [Google Scholar]
  5. Jessie K, Fong MY, Devi S, Lam SK, Wong KT, 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189: 14111418.[Crossref]
    [Google Scholar]
  6. Gubler DJ, Zaki SR, 1998. Dengue and other viral hemorrhagic fevers. Nelson AM, Horsburgh CR Jr, eds. Pathology of Emerging Infections 2. Washington, DC: American Society for Microbiology Press, 4367.
    [Google Scholar]
  7. Rothman AL, 2011. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11: 532543.[Crossref]
    [Google Scholar]
  8. World Health Oganization, 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Geneva: World Health Organization.
    [Google Scholar]
  9. Rothman AL, Ennis FA, 1999. Immunopathogenesis of dengue hemorrhagic fever. Virology 257: 16.[Crossref]
    [Google Scholar]
  10. Mehta D, Malik AB, 2006. Signaling mechanisms regulating endothelial permeability. Physiol Rev 86: 279367.[Crossref]
    [Google Scholar]
  11. Shasby DM, Roberts RL, 1987. Transendothelial transfer of macromolecules in vitro . Fed Proc 46: 25062510.
    [Google Scholar]
  12. Deli MA, Abraham CS, Kataoka Y, Niwa M, 2005. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25: 59127.[Crossref]
    [Google Scholar]
  13. Luplertlop N, Misse D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F, 2006. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 7: 11761181.[Crossref]
    [Google Scholar]
  14. Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA, 2001. Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol 75: 35013508.[Crossref]
    [Google Scholar]
  15. Resta R, Yamashita Y, Thompson LF, 1998. Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161: 95109.[Crossref]
    [Google Scholar]
  16. Narravula S, Lennon PF, Mueller BU, Colgan SP, 2000. Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 165: 52625268.[Crossref]
    [Google Scholar]
  17. Liu P, Woda M, Ennis FA, Libraty DH, 2009. Dengue virus infection differentially regulates endothelial barrier function over time through type I interferon effects. J Infect Dis 200: 191201.[Crossref]
    [Google Scholar]
  18. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M Jr, 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82: 335345.[Crossref]
    [Google Scholar]
  19. Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A, 2005. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79: 80048013.[Crossref]
    [Google Scholar]
  20. Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A, 2010. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 84: 97609774.[Crossref]
    [Google Scholar]
  21. Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, Kalayanarooj S, Libraty DH, Green S, Ennis FA, Rothman AL, 2007. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic fever. J Virol 81: 15921600.[Crossref]
    [Google Scholar]
  22. Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH, 2006. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177: 71147121.[Crossref]
    [Google Scholar]
  23. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL, 2008. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453: 672676.[Crossref]
    [Google Scholar]
  24. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, Rothman AL, Libraty DH, 2004. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis 189: 9901000.[Crossref]
    [Google Scholar]
  25. Nooteboom A, Hendriks T, Otteholler I, van der Linden CJ, 2000. Permeability characteristics of human endothelial monolayers seeded on different extracellular matrix proteins. Mediators Inflamm 9: 235241.[Crossref]
    [Google Scholar]
  26. Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F, 2002. Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11: 8190.[Crossref]
    [Google Scholar]
  27. Renkonen J, Tynninen O, Hayry P, Paavonen T, Renkonen R, 2002. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am J Pathol 161: 543550.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.12-0474
Loading
/content/journals/10.4269/ajtmh.2012.12-0474
Loading

Data & Media loading...

  • Received : 03 Aug 2012
  • Accepted : 30 Sep 2012
  • Published online : 09 Jan 2013
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error