Volume 87, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



s.l. is a species complex, however in Colombia its taxonomic status is unclear. This study was conducted to understand the level of genetic differentiation or population structure of specimens of s.l. from northwestern and southeastern Colombia. Cytochrome oxidase subunit I () and internal transcribed spacer (ITS2) sequence analyses suggested high genetic differentiation between the NW and SE populations. A TCS network and Bayesian inference analysis based on 814 bp of showed two main groups: group I included samples from the NW and group II samples from the SE. Two main ITS2-polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns were found. Pattern I is present in both the NW and SE, and pattern II is found in the SE specimens. To further elucidate the taxonomic status of s.l. in Colombia and how these lineages are related to the Triannulatus Complex species, the evaluation of immature stages, male genitalia, and additional mitochondrial and nuclear markers will be needed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Faran M, , 1980. Mosquito studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles . Contrib Am Entomol Inst 15: 1214. [Google Scholar]
  2. Chadee DD, Wilkerson RC, , 2005. Anopheles triannulatus (Neiva and Pinto): a new Anopheles record from Trinidad, West Indies. J Am Mosq Control Assoc 21: 316317.[Crossref] [Google Scholar]
  3. Oliveira-Ferreira J, Lourenco-de-Oliveira R, Teva A, Deane LM, Daniel-Ribeiro CT, , 1990. Natural malaria infections in anophelines in Rondonia State, Brazilian Amazon. Am J Trop Med Hyg 43: 610. [Google Scholar]
  4. de Arruda M, Carvalho MB, Nussenzweig RS, Maracic M, Ferreira AW, Cochrane AH, , 1986. Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. Am J Trop Med Hyg 35: 873881. [Google Scholar]
  5. Tadei WP, Dutary-Thatcher B, , 2000. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus . Rev Inst Med Trop Sao Paulo 42: 8794.[Crossref] [Google Scholar]
  6. Aramburú J, Ramal C, Witzig R, , 1999. Malaria reemergence in the Peruvian Amazon Region. Emerg Infect Dis 5: 209215.[Crossref] [Google Scholar]
  7. Benarroch EI, , 1931. Studies on malaria in Venezuela. Am J Epidemiol 14: 690693.[Crossref] [Google Scholar]
  8. Gabaldon A, Cova Garcia P, , 1946. Zoogeografìa de los anofelinos en Venezuela. I. Los dos vectores principales. Tijeretazos Malar 10: 78127. [Google Scholar]
  9. Rosa-Freitas MG, Lourenco-de-Oliveira R, de Carvalho-Pinto CJ, Flores-Mendoza C, Silva-do-Nascimento TF, , 1998. Anopheline species complexes in Brazil. Current knowledge of those related to malaria transmission. Mem Inst Oswaldo Cruz 93: 651655.[Crossref] [Google Scholar]
  10. Silva-do-Nascimento TF, Lourenço-de-Oliveira R, , 2002. Anopheles halophylus, a new species of the subgenus Nyssorhynchus (Diptera: Culicidae) from Brazil. Mem Inst Oswaldo Cruz 97: 801811. [Google Scholar]
  11. Silva-do-Nascimento TF, Wilkerson RC, Lourenço-de-Oliveira R, Monteiro FA, , 2006. Molecular confirmation of the specific status of Anopheles halophylus (Diptera: Culicidae) and evidence of a new cryptic species within An. triannulatus in central Brazil. J Med Entomol 43: 455459. [Google Scholar]
  12. Santos JM, Maia JF, Tadei WP, , 2004. Differentiation and genetic variability in natural populations of Anopheles (N.) triannulatus (Neiva & Pinto, 1922) of Brazilian Amazonia. Braz J Biol 64: 327336.[Crossref] [Google Scholar]
  13. Pedro PM, Uezu A, Sallum MA, , 2010. Concordant phylogeographies of 2 malaria vectors attest to common spatial and demographic histories. J Hered 101: 618627.[Crossref] [Google Scholar]
  14. Silva-do-Nascimento TF, Rona LD, Peixoto AA, Lourenço-de-Oliveira R, , 2011. Molecular divergence in the timeless and cpr genes among three sympatric cryptic species of the Anopheles triannulatus complex. Mem Inst Oswaldo Cruz 106 (Suppl I): 218222.[Crossref] [Google Scholar]
  15. Zapata MA, Cienfuegos AV, Quiros OI, Quiñones ML, Luckhart S, Correa MM, , 2007. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of ITS sequences. Am J Trop Med Hyg 77: 6772. [Google Scholar]
  16. Cienfuegos AV, Rosero DA, Naranjo N, Luckhart S, Conn JE, Correa MM, , 2011. Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. Acta Trop 118: 128135.[Crossref] [Google Scholar]
  17. Brochero H, Pareja PX, Ortiz G, Olano VA, , 2006. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Biomedica 26: 269277.[Crossref] [Google Scholar]
  18. Gutiérrez LA, Gonzalez JJ, Gomez GF, Castro MI, Rosero DA, Luckhart S, Conn JE, Correa MM, , 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera:Culicidae) in the states of Cordoba and Antioquia, northwestern Colombia. Mem Inst Oswaldo Cruz 104: 11171124. [Google Scholar]
  19. Gutiérrez LA, Naranjo N, Jaramillo LM, Muskus C, Luckhart S, Conn JE, Correa MM, , 2008. Natural infectivity of Anopheles species from the Pacific and Atlantic Regions of Colombia. Acta Trop 107: 99105.[Crossref] [Google Scholar]
  20. Rodríguez M, Pérez L, Caicedo JC, Prieto G, Arroyo JA, Kaur H, Suarez-Mutis M, de La Hoz F, Lines J, Alexander N, , 2009. Composition and biting activity of Anopheles (Diptera: Culicidae) in the Amazon region of Colombia. J Med Entomol 46: 307315.[Crossref] [Google Scholar]
  21. González R, Carrejo N, , 2009. Introducción al estudio taxonómico de Anopheles de Colombia: claves y notas de distribución. Second edition. Programa Editorial Universidad de Valle, Cali.
  22. Rosero DA, Gutiérrez LA, Cienfuegos AV, Jaramillo LM, Correa MM, , 2010. Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Chil Entomol 36: 260263. [Google Scholar]
  23. Vincze T, Posfai J, Roberts RJ, , 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31: 36883691.[Crossref] [Google Scholar]
  24. Marrelli MT, Floeter-Winter LM, Malafronte RS, Tadei WP, Lourenco-de-Oliveira R, Flores-Mendoza C, Marinotti O, , 2005. Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences. Med Vet Entomol 19: 208218.[Crossref] [Google Scholar]
  25. Oliveira de Carvalho M, , 2002. FragSize: DNA Band Size Determination. Available at: http://www.bioinformatics.org. Accessed October 2011.
  26. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A, , 2011. Research Software for Biologists, Not Computer Scientists. Available at: http://www.geneious.com. Accessed October 2011. [Google Scholar]
  27. Edgar RC, , 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.[Crossref] [Google Scholar]
  28. Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M, , 2009. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430: 5057. Available at: http://its2.bioapps.biozentrum.uni-wuerzburg.de/. Accessed October 2011.[Crossref] [Google Scholar]
  29. Lunt DH, Zhang DX, Szymura JM, Hewitt GM, , 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5: 153165.[Crossref] [Google Scholar]
  30. Gutiérrez LA, Naranjo NJ, Cienfuegos AV, Muskus CE, Luckhart S, Conn JE, Correa MM, , 2009. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia. Malar J 8: 259.[Crossref] [Google Scholar]
  31. Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C, , 2009. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 10: 11.[Crossref] [Google Scholar]
  32. Buhay JE, , 2009. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29: 96110.[Crossref] [Google Scholar]
  33. Song H, Buhay JE, Whiting MF, Crandall KA, , 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105: 1348613491.[Crossref] [Google Scholar]
  34. Moreno M, Marinotti O, Krzywinski J, Tadei WP, James AA, Achee NL, Conn JE, , 2010. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J 9: 127.[Crossref] [Google Scholar]
  35. Ahumada M, Quiñones ML, , 2009. Determinación del papel como vector de malaria de las especies de Anopheles presentes en el Departamento del Meta, Colombia. Tesis de Maestría. Universidad Nacional de Colombia, Facultad de Medicina, Infecciones y Salud en el Trópico.
  36. Sallum MA, Schultz TR, Foster PG, Aronstein K, Wirtz RA, Wilkerson RC, , 2002. Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst Entomol 27: 361382.[Crossref] [Google Scholar]
  37. Clement M, Posada D, Crandall KA, , 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 16571659.[Crossref] [Google Scholar]
  38. Crandall KA, Templeton AR, , 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959969. [Google Scholar]
  39. Bandelt HJ, Forster P, Rohl A, , 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 3748.[Crossref] [Google Scholar]
  40. Fluxus Technology, 2012. Network Copyright 2011 Fluxus Technology Ltd. All rights reserved. Available at: www.fluxus-engineering.com/network_terms.htm.
  41. Huson DH, Bryant D, , 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254267.[Crossref] [Google Scholar]
  42. Bryant D, Moulton V, , 2004. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21: 255265.[Crossref] [Google Scholar]
  43. Huelsenbeck JP, Ronquist F, , 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.[Crossref] [Google Scholar]
  44. Posada D, , 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 12531256.[Crossref] [Google Scholar]
  45. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, , 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 24962497.[Crossref] [Google Scholar]
  46. Excoffier L, Laval G, Schneider S, , 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  47. Wright S, , 1951. The genetical structure of populations. Ann Eugen 15: 323354.[Crossref] [Google Scholar]
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, , 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.[Crossref] [Google Scholar]
  49. Fu YX, , 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915925. [Google Scholar]
  50. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595. [Google Scholar]
  51. Fu YX, Li WH, , 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709. [Google Scholar]
  52. Rogers AR, Harpending H, , 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552569. [Google Scholar]
  53. Rogers AR, , 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608615.[Crossref] [Google Scholar]
  54. Harpending HC, , 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66: 591600. [Google Scholar]
  55. Schneider S, Excoffier L, , 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 10791089. [Google Scholar]
  56. Scarpassa VM, Conn JE, , 2011. MtDNA tracks a complex evolutionary history with Pleistocene divergence for the neotropical malaria vector Anopheles nuneztovari sensu lato. Am J Trop Med Hyg 85: 857867.[Crossref] [Google Scholar]
  57. Loaiza JR, Scott ME, Bermingham E, Rovira J, Conn JE, , 2010. Evidence for pleistocene population divergence and expansion of Anopheles albimanus in Southern Central America. Am J Trop Med Hyg 82: 156164.[Crossref] [Google Scholar]
  58. Castelloe J, Templeton AR, , 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3: 102113.[Crossref] [Google Scholar]
  59. Hasan AU, Suguri S, Fujimoto C, Itaki RL, Harada M, Kawabata M, Bugoro H, Albino B, , 2008. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands. BMC Evol Biol 8: 318.[Crossref] [Google Scholar]
  60. Pedro PM, Sallum MA, , 2009. Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae). Biol J Linn Soc Lond 97: 854866.[Crossref] [Google Scholar]
  61. Hewitt G, , 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907913.[Crossref] [Google Scholar]
  62. Matthews SD, Meehan LJ, Onyabe DY, Vineis J, Nock I, Ndams I, Conn JE, , 2007. Evidence for late Pleistocene population expansion of the malarial mosquitoes, Anopheles arabiensis and Anopheles gambiae in Nigeria. Med Vet Entomol 21: 358369.[Crossref] [Google Scholar]
  63. de Queiroz K, , 2007. Species concepts and species delimitation. Syst Biol 56: 879886.[Crossref] [Google Scholar]
  64. Wiens JJ, Penkrot TA, , 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51: 6991.[Crossref] [Google Scholar]
  65. Reeves PA, Richards CM, , 2011. Species delimitation under the general lineage concept: an empirical example using wild North American hops (Cannabaceae: Humulus lupulus). Syst Biol 60: 4559.[Crossref] [Google Scholar]
  66. Lehmann T, Diabate A, , 2008. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect Genet Evol 8: 737746.[Crossref] [Google Scholar]
  67. McKeon SN, Lehr MA, Wilkerson RC, Ruiz JF, Sallum MA, Lima JB, Povoa MM, Conn JE, , 2010. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil. Malar J 9: 271.[Crossref] [Google Scholar]
  68. Moulton MJ, Song H, Whiting MF, , 2010. Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Mol Ecol Resour 1: 615627.[Crossref] [Google Scholar]
  69. Ruiz F, Wilkerson R, Conn JE, McKeon SN, Levin DM, Quiñones M, Povoa M, Linton YM, , 2012. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasites & Vectors 5: 44.[Crossref] [Google Scholar]
  70. Avise JC, , 2004. Molecular Markers, Natural History, and Evolution. Second edition. Sunderland, MA: Sinauer. [Google Scholar]
  71. O'Loughlin SM, Somboon P, Walton C, , 2007. High levels of population structure caused by habitat islands in the malarial vector Anopheles scanloni . Heredity 99: 3140.[Crossref] [Google Scholar]
  72. Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, Butlin RK, , 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17: 962974.[Crossref] [Google Scholar]
  73. Hebert PD, Cywinska A, Ball SL, deWaard JR, , 2003. Biological identifications through DNA barcodes. Proc Biol Sci 270: 313321.[Crossref] [Google Scholar]
  74. Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH, , 2007. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Mol Phylogenet Evol 43: 283297.[Crossref] [Google Scholar]
  75. Meyer CP, Paulay G, , 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3: e422.[Crossref] [Google Scholar]
  76. Loaiza JR, Scott ME, Bermingham E, Sanjur OI, Wilkerson R, Rovira J, Gutierrez LA, Correa MM, Grijalva MJ, Birnberg L, Bickersmith S, Conn JE, , 2010. Late Pleistocene environmental changes lead to unstable demography and population divergence of Anopheles albimanus in the northern Neotropics. Mol Phylogenet Evol 57: 13411346.[Crossref] [Google Scholar]
  77. Mirabello L, Conn JE, , 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.[Crossref] [Google Scholar]
  78. Mirabello L, Conn JE, , 2008. Population analysis using the nuclear white gene detects Pliocene/Pleistocene lineage divergence within Anopheles nuneztovari in South America. Med Vet Entomol 22: 109119.[Crossref] [Google Scholar]
  79. Gutiérrez LA, Gomez GF, Gonzalez JJ, Castro MI, Luckhart S, Conn JE, Correa MM, , 2010. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia. Am J Trop Med Hyg 83: 3847.[Crossref] [Google Scholar]
  80. Barraclough TG, Vogler AP, , 2000. Detecting the geographical pattern of speciation from species-level phylogenies. Am Nat 155: 419434. [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 04 May 2012
  • Accepted : 19 Jul 2012
  • Published online : 07 Nov 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error