Volume 87, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We evaluated the inhibitory effects of pepstatin A and mefloquine on the and growths of parasites. The growth of , , , and was significantly inhibited ( < 0.05) by micromolar concentrations of pepstatin A (50% inhibitory concentrations = 38.5, 36.5, 17.6, and 18.1 μM, respectively) and mefloquine (50% inhibitory concentrations = 59.7, 56.7, 20.7, and 4 μM, respectively). Furthermore, both reagents either alone at a concentration of 5 mg/kg or in combinations (2.5/2.5 and 5/5 mg/kg) for 10 days significantly inhibited the growth of in mice. Mefloquine treatment was highly effective and the combination treatments were less effective than other treatments. Therefore, mefloquine may antagonize the actions of pepstatin A against babesiosis and aspartic proteases may play an important role in the asexual growth cycle of parasites.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kuttler KL, Ristic M, , 1988. World-wide impact of babesiosis. , ed. Babesiosis of Domestic Animals and Man. Boca Raton, FL: CRC Press, 122. [Google Scholar]
  2. Wright IG, Goodger BV, Ristic M, , 1988. Pathogenesis of babesiosis. , ed. Babesiosis of Domestic Animals and Man. Boca Raton, FL: CRC Press, 99118. [Google Scholar]
  3. Homer MJ, Aguilar-Delfin I, Telford III, Sr. Krause PJ, Persing DH, , 2000. Babesiosis. Clin Microbiol Rev 13: 451469.[Crossref] [Google Scholar]
  4. Kjemtrup AM, Conrad PA, , 2000. Human babesiosis: an emerging tick-borne disease. Int J Parasitol 30: 13231337.[Crossref] [Google Scholar]
  5. Vial HJ, Gorenflot A, , 2006. Chemotherapy against babesiosis. Vet Parasitol 138: 147160.[Crossref] [Google Scholar]
  6. Bork S, Yokoyama N, Matsuo T, Claveria FG, Fujisaki K, Igarashi I, , 2003a. Growth inhibitory effect of triclosan on equine and bovine Babesia parasites. Am J Trop Med Hyg 68: 334340. [Google Scholar]
  7. Nagai A, Yokoyama N, Matsuo T, Bork S, Hirata H, Xuan X, , 2003. Growth-inhibitory effects of artesunate, pyrimethamine, and pamaquine against Babesia equi and Babesia caballi in in vitro cultures. Antimicrob Agents Chemother 47: 800803.[Crossref] [Google Scholar]
  8. Bork S, Yokoyama N, Ikehara Y, Kumar S, Sugimoto C, Igarashi I, , 2004. Growth-inhibitory effect of heparin on Babesia parasites. Antimicrob Agents Chemother 48: 236241.[Crossref] [Google Scholar]
  9. Bork S, Das S, Okubo K, Yokoyama N, Igarashi I, , 2006. Effect of protein kinase inhibitors on the in vitro growth of Babesia bovis . Parasitology 132: 775779.[Crossref] [Google Scholar]
  10. Okubo K, Yokoyama N, Govind Y, Alhassan A, Igarashi I, , 2007. Babesia bovis: effects of cysteine protease inhibitors on in vitro growth. Exp Parasitol 117: 214217.[Crossref] [Google Scholar]
  11. Goldberg DE, Slater AFG, Beavis R, Chait B, Cerami A, Henderson GB, , 1991. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. JEM 173: 961969.[Crossref] [Google Scholar]
  12. Laurent F, Bourdieu C, Kaga M, Chilmonczyk S, Zgrzebski G, Yvore P, Pery P, , 1993. Cloning and characterization of an Eimeria acervulina sporozoite gene homologous to aspartyl proteinases. Mol Biochem Parasitol 62: 303312.[Crossref] [Google Scholar]
  13. Jean L, Grosclaude J, Labbe M, Tomley F, Pery P, , 2000. Differential localization of an Eimeria tenella aspartyl proteinase during the infection process. Int J Parasitol 30: 10991107.[Crossref] [Google Scholar]
  14. Pinho R, Beltramini L, Alves C, De-Simone S, , 2009. Trypanosoma cruzi: isolation and characterization of aspartyl proteases. Exp Parasitol 122: 128133.[Crossref] [Google Scholar]
  15. Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, Bryant ML, Sherman DR, Russell DG, Goldberg DE, , 1994. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 13: 306317. [Google Scholar]
  16. Silva AM, Lee AY, Gulnik SV, Majer P, Collins J, Bhat TN, , 1996. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum . Proc Natl Acad Sci USA 93: 1003410039.[Crossref] [Google Scholar]
  17. Moon RP, Tyas L, Certa U, Rupp K, Bur D, Jacquet C, Matile H, Loetscher H, Grueninger-Leitch F, Kay J, Dunn BM, Berry C, Ridley RG, , 1997. Expression and characterisation of plasmepsin I from Plasmodium falciparum . Eur J Biochem 244: 552560.[Crossref] [Google Scholar]
  18. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE, , 2002. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 99: 990995.[Crossref] [Google Scholar]
  19. Bailly E, Jambou R, Savel J, Jaureguiberry G, , 1992. Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and pepstatin A (aspartyl protease inhibitor). J Protozool 39: 593599.[Crossref] [Google Scholar]
  20. Semenov A, Olson JE, Rosenthal PJ, , 1998. Antimalarial synergy of cysteine and aspartic protease inhibitors. Antimicrob Agents Chemother 42: 22542258. [Google Scholar]
  21. Sharma A, Eapen A, Subbararao SK, , 2005. Purification and characterization of a hemoglobin degrading aspartic protease from the malarial parasite Plasmodium vivax . J Biochem 138: 7178.[Crossref] [Google Scholar]
  22. Palmer KJ, Holliday SM, Brogden RN, , 1993. Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 45: 430475.[Crossref] [Google Scholar]
  23. Mockenhaupt FP, , 1995. Mefloquine resistance in Plasmodium falciparum . Parasitol Today 11: 248253.[Crossref] [Google Scholar]
  24. Schlagenhauf P, , 1999. Mefloquine for malaria chemoprophylaxis 1992–1998: a review. J Travel Med 6: 122133.[Crossref] [Google Scholar]
  25. Nevin RL, , 2009. Epileptogenic potential of mefloquine chemoprophylaxis: a pathogenic hypothesis. Malar J 8: 188.[Crossref] [Google Scholar]
  26. Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG, , 1998. An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem Pharmacol 55: 727736.[Crossref] [Google Scholar]
  27. Mungthin M, Bray PG, Ridley RG, Ward SA, , 1998. Central role of hemoglobin degradation in mechanisms of action of 4-aminoquinolines, quinoline methanols, and phenanthrene methanols. Antimicrob Agents Chemother 42: 29732977. [Google Scholar]
  28. Brayton KA, Lau AO, Herndon DR, Hannick L, Kappmeyer LS, Berens SJ, , 2007. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 3: 14011413.[Crossref] [Google Scholar]
  29. AbouLaila M, Nakamura K, Govind Y, Yokoyama N, Igarashi I, , 2010a. Evaluation of the in vitro growth-inhibitory effect of epoxomicin on Babesia parasites. Vet Parasitol 167: 1927.[Crossref] [Google Scholar]
  30. Zweygarth E, Just MC, de Waal DT, , 1995. Continuous in vitro cultivation of erythrocytic stages of Babesia equi . Parasitol Res 81: 355358.[Crossref] [Google Scholar]
  31. Erp EE, Smith RD, Ristic M, Osorno BM, , 1980. Optimization of the suspension culture method for in vitro cultivation of Babesia bovis . Am J Vet Res 41: 20592062. [Google Scholar]
  32. AbouLaila M, Munkhjargal T, Sivakumar T, Ueno A, Nakano Y, Yokoyama M, Yoshinari T, Nagano D, Katayama K, El-Bahy N, Yokoyama N, Igarashi I, , 2012. Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites. Antimicrob Agents Chemother 56: 31963206.[Crossref] [Google Scholar]
  33. Bork S, Yokoyama N, Matsuo T, Claveria FG, Fujisaki K, Igarashi I, , 2003c. Clotrimazole, ketoconazole, and clodinafop-propargyl inhibit the in vitro growth of Babesia bigemina and Babesia bovis (Phylum Apicomplexa). Parasitology 127: 311315.[Crossref] [Google Scholar]
  34. Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, Socheat D, Ariey F, Wongsrichanalai C, , 2009. Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J 8: 10. doi:10.1186/1475-2875-8-10.[Crossref] [Google Scholar]
  35. Wurtz N, Briolant S, Gil M, Parquet V, Henry M, Baret E, Amalvict R, Almeras L, Rogier C, Pradines B, , 2010. Synergy of mefloquine activity with atorvastatin, but not chloroquine and monodesethylamodiaquine, and association with the pfmdr1 gene. J Antimicrob Chemother 65: 13871394.[Crossref] [Google Scholar]
  36. Lee HS, Go ML, , 1996. Effects of mefloquine on Ca2+ uptake and release by dog brain microsomes. Arch Int Pharmacodyn Ther 331: 221231. [Google Scholar]
  37. Takabatake N, Hashiba S, Bork S, Okamura M, Yokoyama N, Igarashi I, , 2004. Fucoidan inhibits the in vitro growth of Babesia bovis . J Protozool Res 14: 5560. [Google Scholar]
  38. Igarashi I, Njonge F, Kaneko Y, Nakamura Y, , 1998. Babesia bigemina: in vitro and in vivo effects of curdlan sulfate on the growth of parasites. Exp Parasitol 90: 290293.[Crossref] [Google Scholar]
  39. Munkhjargal T, Aboulaila M, Sivakumar T, Yokoyama N, Igarashi I, , 2009. Inhibitory effect of apicidin on in vitro and in vivo growth of Babesia parasites. J Protozool Res 19: 4249. [Google Scholar]
  40. Bork S, Yokoyama N, Matsuo T, Claveria FG, Fujisaki K, Igarashi I, , 2003b. Clotrimazole, ketoconazole, and clodinafop-propargyl inhibit the in vitro growth of Babesia bigemina and Babesia bovis (Phylum Apicomplexa). Parasitology 127: 311315.[Crossref] [Google Scholar]
  41. AbouLaila M, Yokoyama N, Igarashi I, , 2010b. Inhibitory effect of (-)-Epigallocatechin-3-gallate from green tea on the growth of Babesia parasites. Parasitology 137: 78587791.[Crossref] [Google Scholar]
  42. AbouLaila M, Sivakumar T, Yokoyama N, Igarashi I, , 2010d. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol Int 59: 278282.[Crossref] [Google Scholar]
  43. Keiser J, Chollet J, Xiao SH, Mei JY, Jiao PY, Utzinger J, Tanner M, , 2009. Mefloquine – an aminoalcohol with promising antischistosomal properties in mice. PLoS Negl Trop Dis 3: e350. doi:10.1371/journal.pntd.0000350.[Crossref] [Google Scholar]
  44. Keiser J, Odermatt P, Tesana S, , 2009. Dose-response relationships and tegumental surface alterations in Opisthorchis viverrini following treatment with mefloquine in vivo and in vitro . Parasitol Res 105: 261266.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 04 Apr 2012
  • Accepted : 05 Jul 2012
  • Published online : 03 Oct 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error