Volume 87, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Sensitive detection methods are needed to progress from schistosomiasis control to elimination. The sensitivity of the Kato-Katz thick smear and miracidium hatching tests decrease with infection intensity and serological tests cannot always identify current infections. We evaluated a fecal polymerase chain reaction (PCR) assay to detect infection in 106 humans and 8 bovines in China. PCR was highly sensitive, detecting DNA at 0.5 eggs/g of stool. Comparing PCR examination of a single stool sample to the miracidium hatching test using three consecutive stool samples, more humans were hatching test positive (20%) than PCR positive (15%). However, two individuals were PCR positive in a village where no infections were detected by coprological methods. The sensitivity of PCR makes it a promising tool for schistosomiasis diagnostics and screening, although egg shedding variability and stool sample size present challenges for any detection method in low-transmission areas.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, Sudomo M, Olveda R, , 2010. Schistosomiasis japonica control and research needs. Adv Parasitol 72: 145178.[Crossref] [Google Scholar]
  2. Wang LD, Guo JG, Wu XH, Chen HG, Wang TP, Zhu SP, Zhang ZH, Steinmann P, Yang GJ, Wang SP, Wu ZD, Wang LY, Hao Y, Bergquist R, Utzinger J, Zhou XN, , 2009. China's new strategy to block Schistosoma japonicum transmission: experiences and impact beyond schistosomiasis. Trop Med Int Health 14: 14751483.[Crossref] [Google Scholar]
  3. Savioli L, Gabrielli AF, Montresor A, Chitsulo L, Engels D, , 2009. Schistosomiasis control in Africa: 8 years after World Health Assembly Resolution 54.19. Parasitology 136: 16771681.[Crossref] [Google Scholar]
  4. WHO, 2009. Elimination of Schistosomiasis from Low-Transmission Areas: Report of a WHO Informal Consultation. Salvador, Brazil: WHO. [Google Scholar]
  5. Lin DD, Liu JX, Liu YM, Hu F, Zhang YY, Xu JM, Li JY, Ji MJ, Bergquist R, Wu GL, Wu HW, , 2008. Routine Kato-Katz technique underestimates the prevalence of Schistosoma japonicum: a case study in an endemic area of the People's Republic of China. Parasitol Int 57: 281286.[Crossref] [Google Scholar]
  6. Yu JM, de Vlas SJ, Jiang QW, Gryseels B, , 2007. Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int 56: 4549.[Crossref] [Google Scholar]
  7. Zhang YY, Luo JP, Liu YM, Wang QZ, Chen JH, Xu MX, Xu JM, Wu J, Tu XM, Wu GL, Zhang ZS, Wu HW, , 2009. Evaluation of Kato-Katz examination method in three areas with low-level endemicity of schistosomiasis japonica in China: a Bayesian modeling approach. Acta Trop 112: 1622.[Crossref] [Google Scholar]
  8. Xu J, Peeling RW, Chen JX, Wu XH, Wu ZD, Wang SP, Feng T, Chen SH, Li H, Guo JG, Zhou XN, , 2011. Evaluation of immunoassays for the diagnosis of Schistosoma japonicum infection using archived sera. PLoS Negl Trop Dis 5: e949.[Crossref] [Google Scholar]
  9. Zhou XN, Xu J, Chen HG, Wang TP, Huang XB, Lin DD, Wang QZ, Tang L, Guo JG, Wu XH, Feng T, Chen JX, Guo J, Chen SH, Li H, Wu ZD, Peeling RW, , 2011. Tools to support policy decisions related to treatment strategies and surveillance of schistosomiasis japonica towards elimination. PLoS Negl Trop Dis 5: e1408.[Crossref] [Google Scholar]
  10. Zhu YC, , 2005. Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop 96: 130136.[Crossref] [Google Scholar]
  11. Wang W, Li Y, Li H, Xing Y, Qu G, Dai J, Liang Y, , 2012. Immunodiagnostic efficacy of detection of Schistosoma japonicum human infections in China: a meta analysis. Asian Pac J Trop Med 5: 1523.[Crossref] [Google Scholar]
  12. Gomes LI, Marques LH, Enk MJ, Coelho PM, Rabello A, , 2009. Further evaluation of an updated PCR assay for the detection of Schistosoma mansoni DNA in human stool samples. Mem Inst Oswaldo Cruz 104: 11941196.[Crossref] [Google Scholar]
  13. Hamburger J, He N, Abbasi I, Ramzy RM, Jourdane J, Ruppel A, , 2001. Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg 65: 907911. [Google Scholar]
  14. Pontes LA, Dias-Neto E, Rabello A, , 2002. Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. Am J Trop Med Hyg 66: 157162. [Google Scholar]
  15. Pontes LA, Oliveira MC, Katz N, Dias-Neto E, Rabello A, , 2003. Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni . Am J Trop Med Hyg 68: 652656. [Google Scholar]
  16. Sandoval N, Siles-Lucas M, Perez-Arellano JL, Carranza C, Puente S, Lopez-Aban J, Muro A, , 2006. A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology 133: 581587.[Crossref] [Google Scholar]
  17. Lier T, Johansen MV, Hjelmevoll SO, Vennervald BJ, Simonsen GS, , 2008. Real-time PCR for detection of low intensity Schistosoma japonicum infections in a pig model. Acta Trop 105: 7480.[Crossref] [Google Scholar]
  18. Lier T, Simonsen GS, Haaheim H, Hjelmevoll SO, Vennervald BJ, Johansen MV, , 2006. Novel real-time PCR for detection of Schistosoma japonicum in stool. Southeast Asian J Trop Med Public Health 37: 257264. [Google Scholar]
  19. Lier T, Simonsen GS, Wang T, Lu D, Haukland HH, Vennervald BJ, Hegstad J, Johansen MV, , 2009. Real-time polymerase chain reaction for detection of low-intensity Schistosoma japonicum infections in China. Am J Trop Med Hyg 81: 428432. [Google Scholar]
  20. Thanchomnang T, Intapan P, Sri-Aroon P, Lulitanond V, Janwan P, Sanpool O, Maleewong W, , 2011. Molecular detection of Schistosoma japonicum in infected snails and mouse feces using a real-time PCR assay with FRET hybridization probes. Mem Inst Oswaldo Cruz 106: 831836.[Crossref] [Google Scholar]
  21. Wu HW, Qin YF, Chu K, Meng R, Liu Y, McGarvey ST, Olveda R, Acosta L, Ji MJ, Fernandez T, Friedman JF, Kurtis JD, , 2010. High prevalence of Schistosoma japonicum infection in water buffaloes in the Philippines assessed by real-time polymerase chain reaction. Am J Trop Med Hyg 82: 646652.[Crossref] [Google Scholar]
  22. Xia CM, Rong R, Lu ZX, Shi CJ, Xu J, Zhang HQ, Gong W, Luo W, , 2009. Schistosoma japonicum: a PCR assay for the early detection and evaluation of treatment in a rabbit model. Exp Parasitol 121: 175179.[Crossref] [Google Scholar]
  23. Liang S, Yang C, Zhong B, Qiu D, , 2006. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ 84: 139144.[Crossref] [Google Scholar]
  24. Carlton EJ, Bates MN, Zhong B, Seto EY, Spear RC, , 2011. Evaluation of mammalian and intermediate host surveillance methods for detecting schistosomiasis reemergence in southwest China. PLoS Negl Trop Dis 5: e987.[Crossref] [Google Scholar]
  25. Department of Diseases Control, 2000. Textbook for Schistosomiasis Control. Shanghai: Shanghai Publishing House for Science and Technology. [Google Scholar]
  26. Katz N, Chaves A, Pellegrino J, , 1972. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400. [Google Scholar]
  27. Dacombe RJ, Crampin AC, Floyd S, Randall A, Ndhlovu R, Bickle Q, Fine PE, , 2007. Time delays between patient and laboratory selectively affect accuracy of helminth diagnosis. Trans R Soc Trop Med Hyg 101: 140145.[Crossref] [Google Scholar]
  28. King CH, Dickman K, Tisch DJ, , 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 15611569.[Crossref] [Google Scholar]
  29. Carlton EJ, Hsiang M, Zhang Y, Johnson S, Hubbard A, Spear RC, , 2010. The impact of Schistosoma japonicum infection and treatment on ultrasound-detectable morbidity: a five-year cohort study in Southwest China. PLoS Negl Trop Dis 4: e685.[Crossref] [Google Scholar]
  30. Ezeamama AE, Friedman JF, Olveda RM, Acosta LP, Kurtis JD, Mor V, McGarvey ST, , 2005. Functional significance of low-intensity polyparasite helminth infections in anemia. J Infect Dis 192: 21602170.[Crossref] [Google Scholar]
  31. Spear RC, Seto EY, Carlton EJ, Liang S, Remais JV, Zhong B, Qiu D, , 2011. The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. Int J Parasitol 41: 12431247.[Crossref] [Google Scholar]
  32. Yu JM, de Vlas SJ, Yuan HC, Gryseels B, , 1998. Variations in fecal Schistosoma japonicum egg counts. Am J Trop Med Hyg 59: 370375. [Google Scholar]
  33. Ross AG, Li Y, Sleigh AC, Williams GM, McManus DP, , 1998. Fecal egg aggregation in humans infected with Schistosoma japonicum in China. Acta Trop 70: 205210.[Crossref] [Google Scholar]
  34. Hubbard A, Liang S, Maszle D, Qiu D, Gu X, Spear RC, , 2002. Estimating the distribution of worm burden and egg excretion of Schistosoma japonicum by risk group in Sichuan province, China. Parasitology 125: 221231.[Crossref] [Google Scholar]
  35. Xu J, Rong R, Zhang HQ, Shi CJ, Zhu XQ, Xia CM, , 2010. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int J Parasitol 40: 327331.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 19 Mar 2012
  • Accepted : 09 Sep 2012
  • Published online : 05 Dec 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error