Volume 87, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dynamics of abundance and malaria transmission potential rely strongly on environmental conditions. Female and male use sugar and are affected by its absence, but how the presence or absence of nectariferous plants affects abundance and vectorial capacity has not been studied. We report on four replicates of a cohort study performed in mesocosms with sugar-poor and sugar-rich plants, in which we measured mosquito survival, biting rates, and fecundity. Survivorship was greater with access to sugar-rich plant species, and mortality patterns were age-dependent. Sugar-poor populations experienced Weibull mortality patterns, and of four populations in the sugar-rich environment, two female and three male subpopulations were better fitted by Gompertz functions. A tendency toward higher biting rates in sugar-poor mesocosms, particularly for young females, was found. Therefore, vectorial capacity was pulled in opposing directions by nectar availability, resulting in highly variable vectorial capacity values.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hay SI, Snow RW, Rogers DJ, , 1998. Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans R Soc Trop Med Hyg 92: 1220.[Crossref] [Google Scholar]
  2. Zhou G, Munga S, Minakawa N, Githeko AK, Yan G, , 2007. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 77: 2935. [Google Scholar]
  3. Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G, , 2008. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Infect Dis 14: 15331538.[Crossref] [Google Scholar]
  4. Reisen WK, , 2010. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55: 461483.[Crossref] [Google Scholar]
  5. Dye C, , 1992. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol 37: 119.[Crossref] [Google Scholar]
  6. Garrett-Jones C, , 1964. Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature 204: 11731175.[Crossref] [Google Scholar]
  7. Macdonald G, , 1957. The Epidemiology and Control of Malaria. Oxford, UK: Oxford University Press. [Google Scholar]
  8. Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez MG, , 2009. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malar J 8: 228.[Crossref] [Google Scholar]
  9. Clements AN, Paterson GD, , 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18: 373399.[Crossref] [Google Scholar]
  10. Styer LM, Carey JR, Wang JL, Scott TW, , 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111117. [Google Scholar]
  11. Bellan SE, , 2010. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS ONE 5: e10165.[Crossref] [Google Scholar]
  12. Gary RE, Foster WA, , 2001. Effects of available sugar on the reproductive fitness and vectorial capacity of the malaria vector Anopheles gambiae (Diptera: Culicidae). J Med Entomol 38: 2228.[Crossref] [Google Scholar]
  13. Straif SC, Beier JC, , 1996. Effects of sugar availability on the blood feeding behaviour of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 33: 608612.[Crossref] [Google Scholar]
  14. Manda H, Gouagna LC, Foster WA, Jackson RR, Beier JC, Githure JI, Hassanali A, , 2007. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae . Malar J 6: 113.[Crossref] [Google Scholar]
  15. Gary RE, Cannon JW, Foster WA, , 2009. Effect of sugar on male Anopheles gambiae Giles (Diptera: Culicidae) mating performance, as modified by temperature, space, and body size. Parasites and Vectors 2: 19.[Crossref] [Google Scholar]
  16. Stone CM, Taylor RM, Roitberg BD, Foster WA, , 2009. Sugar deprivation reduces insemination of Anopheles gambiae (Diptera: Culicidae), despite daily recruitment of adults, and predicts decline in model populations. J Med Entomol 46: 13271337.[Crossref] [Google Scholar]
  17. Gary RE, Foster WA, , 2004. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol 18: 102107.[Crossref] [Google Scholar]
  18. Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, Beier JC, Hassanali A, Knols BJG, , 2004. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol 18: 108115.[Crossref] [Google Scholar]
  19. Gu W, Müller G, Schlein Y, Novak RJ, Beier JC, , 2011. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS ONE 6: e15996.[Crossref] [Google Scholar]
  20. Beier JC, Müller GC, Gu W, Arheart KL, Schlein J, , 2012. Attractive toxic sugar bait (ATSB) methods decimate populations of malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malar J 11: 31.[Crossref] [Google Scholar]
  21. Foster WA, Takken W, , 2004. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res 94: 145157.[Crossref] [Google Scholar]
  22. Stone CM, Hamilton IM, Foster WA, , 2011. A survival and reproduction trade-off is resolved in accordance with resource availability by virgin female mosquitoes. Anim Behav 81: 765774.[Crossref] [Google Scholar]
  23. Stone CM, Jackson BT, Foster WA, , 2012. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae . Malar J 11: 3.[Crossref] [Google Scholar]
  24. Manda H, Gouagna LC, Nyandat E, Kabiru W, Jackson RR, Foster WA, Githure JI, Beier JC, Hassanali A, , 2007. Discriminative feeding behaviour of Anopheles gambiae s.s on endemic plants in Western Kenya. Med Vet Entomol 21: 103111.[Crossref] [Google Scholar]
  25. Mains JW, Mercer DR, Dobson SL, , 2008. Digital image analysis to estimate numbers of Aedes eggs oviposited in containers. J Am Mosq Control Assoc 24: 496.[Crossref] [Google Scholar]
  26. R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. Vienna, Austraia: R Foundation for Statistical Computing. [Google Scholar]
  27. Crawley MJ, , 2007. The R Book. New York: John Wiley & Sons Inc.[Crossref] [Google Scholar]
  28. Pletcher SD, , 1999. Model fitting and hypothesis testing for age-specific mortality data. J Evol Biol 12: 430439.[Crossref] [Google Scholar]
  29. Pletcher SD, Khazaeli AA, Curtsinger JW, , 2000. Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol A 55: B381B389.[Crossref] [Google Scholar]
  30. Bokov AF, Gelfond J, , 2010. Survomatic: Analysis of Longevity Data, R Package Version [Google Scholar]
  31. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM, , 2009. Mixed Effects Models and Extensions in Ecology with R. New York: Springer.[Crossref] [Google Scholar]
  32. Carey JR, , 1993. Applied Demography for Biologists with Special Emphasis on Insects. New York: Oxford University Press. [Google Scholar]
  33. Skalski JR, Millspaugh JJ, Dillingham P, Buchanan RA, , 2007. Calculating the variance of the finite rate of population change from a matrix model in Mathematica. Environ Model Softw 22: 359364.[Crossref] [Google Scholar]
  34. Rasgon JL, Styer LM, Scott TW, , 2003. Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J Med Entomol 40: 125132.[Crossref] [Google Scholar]
  35. Schwartz A, Koella JC, , 2002. Melanization of Plasmodium falciparum and C-25 Sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol 39: 8488.[Crossref] [Google Scholar]
  36. Burnham KP, Anderson DR, , 2002. Model Selection and Multimodel Inference; A Practical Information-Theoretical Approach. Second Edition. New York: Springer. [Google Scholar]
  37. Detinova TS, , 1962. Age grouping methods in Diptera of medical importance with special to some vectors of malaria. Monogr Ser World Health Organ 47: 13191. [Google Scholar]
  38. Rankin DJ, Kokko H, , 2007. Do males matter? The role of males in population dynamics. Oikos 116: 335348.[Crossref] [Google Scholar]
  39. Müller G, Schlein Y, , 2005. Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med Vet Entomol 19: 413422.[Crossref] [Google Scholar]
  40. Junnila A, Müller GC, Schlein Y, , 2010. Species identification of plant tissues from the gut of An. sergentii by DNA analysis. Acta Trop 115: 227233.[Crossref] [Google Scholar]
  41. Scott TW, Naksathit A, Day JF, Kittayapong P, Edman JD, , 1997. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Am J Trop Med Hyg 57: 235239. [Google Scholar]
  42. Costero A, Edman JD, Clark CG, Scott TW, , 1998. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. J Med Entomol 35: 809813.[Crossref] [Google Scholar]
  43. Harrington LC, Edman JD, Scott TW, , 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38: 411422.[Crossref] [Google Scholar]
  44. Gary RE, , 2005. Biology of the Malaria Vector Anopheles gambiae: Behavioural and Reproductive Components of Sugar Feeding. PhD dissertation, Columbus, OH: The Ohio State University. [Google Scholar]
  45. Gillies MT, , 1953. The duration of the gonotrophic cycle in Anopheles gambiae and Anopheles funestus, with a note on the efficiency of hand catching. East Afr Med J 30: 129135. [Google Scholar]
  46. Koella JC, Sörensen FL, Anderson RA, , 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae . Proc Biol Sci 265: 763768.[Crossref] [Google Scholar]
  47. Smith DL, Dushoff J, McKenzie FE, , 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2: e368.[Crossref] [Google Scholar]

Data & Media loading...


  • Received : 22 Feb 2012
  • Accepted : 14 Jul 2012
  • Published online : 03 Oct 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error