Volume 87, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



In 2011 the World Health Organization approved Xpert MTB/RIF for tuberculosis diagnosis and recommended its rapid implementation. Xpert MTB/RIF is accurate: sensitivity is 72.5 –98.2% (smear-negative and -positive cases, respectively) and specificity 99.2%. Benefits include same-day diagnosis and simultaneous detection of rifampicin resistance. However, the test has some shortcomings and has not had time for thorough evaluation. Cost-effectiveness studies are difficult to perform and few have been completed. Existing data suggest cost-effectiveness in some, but not all, settings. The urgent need for better diagnostics is evident. Yet, serial implementation of new technologies causes ineffective spending and fragmentation of services. How new tests are incorporated into existing diagnostic algorithms affects both outcomes and costs. More detailed data on performance, effect on patient-important outcomes, and costs when used with adjunct tests are needed for each setting before implementation. While awaiting further clarification it seems prudent to slow its implementation among resource-constrained tuberculosis control programs.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2011. Global Tuberculosis Control. Geneva: World Health Organization. [Google Scholar]
  2. WHO, 2011. Rapid Implementation of the Xpert MTB/RIF Diagnostic Test. Technical and Operational How-to: Practical Considerations. Geneva: World Health Organization. [Google Scholar]
  3. WHO, 2011. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System. Policy Statement. Geneva: World Health Organization. [Google Scholar]
  4. WHO, 2011. Prerequisites to Country Implementation of Xpert MTB/RIF and Key Action Points at Country Level. Checklist. Geneva: World Health Organization. [Google Scholar]
  5. WHO, 2011. WHO Monitoring of Xpert MTB/RIF Roll-Out: Country and Partner Plans. Geneva: World Health Organization. [Google Scholar]
  6. Trébucq A, Enarson D, Chiang C, Van Deun A, Harries A, Boillot F, Detjen A, Fujiwara P, Graham S, Monedero I, Rusen I, Rieder H, , 2011. Xpert MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how? Int J Tuberc Lung Dis 15: 15671571.[Crossref] [Google Scholar]
  7. Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W, , 2010. Xpert((R)) MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: hype or hope? Expert Rev Mol Diagn 10: 937946.[Crossref] [Google Scholar]
  8. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD, , 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 10051015.[Crossref] [Google Scholar]
  9. Rattan A, Kalia A, Ahmed N, , 1999. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Ind J Tub 46: 5168. [Google Scholar]
  10. Small PM, Pai M, , 2010. Tuberculosis diagnosis: time for a game change? N Engl J Med 363: 10701071.[Crossref] [Google Scholar]
  11. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D, , 2010. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 48: 24952501.[Crossref] [Google Scholar]
  12. Zbinden A, Keller P, Bloemberg G, , 2011. Rapid molecular detection of tuberculosis. N Engl J Med 364: 183. [Google Scholar]
  13. Hesseling A, Graham S, Cuevas L, , 2011. Rapid molecular detection of tuberculosis. N Engl J Med 364: 184. [Google Scholar]
  14. Boehme C, Alland D, Perkins M, , 2011. Rapid molecular detection of tuberculosis. N Engl J Med 364: 184185. [Google Scholar]
  15. Heinrich N, Rachow A, Hoelscher M, , 2011. Rapid molecular detection of tuberculosis. N Engl J Med 364: 182.[Crossref] [Google Scholar]
  16. WHO, 2011. WHO progress report 2011. Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015. Geneva: World Health Organization.
  17. Trébucq A, Enarson D, Chiang C, Van Deun A, Harries A, Boillot F, Detjen A, Fujiwara P, Graham S, Monedero I, Rusen I, Rieder H, , 2011. Xpert MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how? Int J Tuberc Lung Dis 15: 15671572.[Crossref] [Google Scholar]
  18. O'Grady J, Maeurer M, Mwabab P, Kapatab N, Batesa M, Hoelscher M, Zumla A, , 2011. New and improved diagnostics for detection of drug-resistant pulmonary tuberculosis. Curr Opin Pulm Med 17: 134141.[Crossref] [Google Scholar]
  19. Moore D, Shah N, , 2011. Alternative methods of diagnosing drug resistance–what can they do for me? JID 204: S1110S1119.[Crossref] [Google Scholar]
  20. Dowdy D, Cattamanchi A, Steingart K, Pai M, , 2011. Is scale-worth it? Challenges in economic analysis of diagnostic tests for tuberculosis. PLoS Med 8: e1001063.[Crossref] [Google Scholar]
  21. Evans C, , 2011. GeneXpert–a game-changer for tuberculosis control? PLoS Med 8: e1001064.[Crossref] [Google Scholar]
  22. Vassall A, van Kampen S, Sohn H, Michael JS, John KR, den Boon S, Davis JL, Whitelaw A, Nicol MP, Gler MT, Khaliqov A, Zamudio C, Perkins MD, Boehme CC, Cobelens F, , 2011. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med 8: e1001120.[Crossref] [Google Scholar]
  23. Meyer-Rath G, Bistline K, Long L, MacLeod W, Sanne I, Stevens W, Rosen S, , 2011. The Incremental Cost of Introducing Xpert MTB/RIF into the South African National Tuberculosis Programme: Results of the National TB Cost Model. Johannesburg: HE2RO Policy Brief Number 1, Health Economics and Epidemiology Research Office. [Google Scholar]
  24. Yager P, Domingo G, Gerdes J, , 2008. Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10: 107144.[Crossref] [Google Scholar]
  25. Walker D, , 2001. Economic analysis of tuberculosis diagnostic tests in disease control: how can it be modelled and what additional information is needed? Int J Tuberc Lung Dis 5: 10991108. [Google Scholar]
  26. Briggs A, , 2007. New methods of analyzing cost effectiveness. BMJ 29: 622623.[Crossref] [Google Scholar]
  27. Sohn H, Minion J, Albert H, Dheda K, Pai M, , 2009. TB diagnostic tests: how do we figure out their costs? Expert Review of Anti-infective Therapy 7: 723733.[Crossref] [Google Scholar]
  28. Cunningham J, Perkins M, , 2006. Diagnostics for Tuberculosis: Global Demand and Market Potential. Geneva: World Health Organization. [Google Scholar]
  29. Mauskopf J, Sullivan S, Annemans L, Caro J, Mullins C, Nuijten M, Orlewska E, Watkins J, Trueman P, , 2007. Principles of good practice for budget impact analysis: report of the ISPOR Task Force on good research practices–budget impact analysis. Value Health 10: 336347.[Crossref] [Google Scholar]
  30. Mann G, Squire SB, Bissell K, Eliseev P, Du Toit E, Hesseling A, Nicol M, Detjen A, Kritski A, , 2010. Beyond accuracy: creating a comprehensive evidence base for tuberculosis diagnostic tools. Int J Tuberc Lung Dis 14: 15181524. [Google Scholar]
  31. Resch S, Salomon J, Murray M, Weinstein M, , 2006. Cost-effectiveness of treating multidrug-resistant tuberculosis. PLoS Med 3: e241.[Crossref] [Google Scholar]
  32. Van Deun A, Maug AK, Salim MA, Das PK, Sarker MR, Daru P, Rieder HL, , 2010. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182: 182.[Crossref] [Google Scholar]
  33. European CDC, 2011. Use of Interferon Gamma Release Assays in Support of Tuberculosis Diagnosis. Stockholm: European Centre for Disease Prevention and Control. [Google Scholar]
  34. McNerney R, Maeurer M, Abubakar I, Marais B, McHugh T, Ford N, Weyer K, Lawn S, Grobusch M, Memish Z, Squire S, Pantaleo G, Chakaya J, Casenghi M, Migliori G, Mwaba P, Zijenah L, Hoelscher M, Cox H, Swaminathan S, Kim P, Schito M, Harari A, Bates M, Schwank S, O'Grady J, Pletschette M, Ditui L, Atun R, Zumla A, , 2012. Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities. J Infect Dis 205 (2 Suppl): S147S158.[Crossref] [Google Scholar]
  35. Theron G, Pooran A, Peter J, van Zyl-Smit R, Mishra H, Meldau R, Calligaro G, Allwood B, Sharma S, Dawson R, Dheda K, , 2012. Do adjunct TB tests, when combined with Xpert MTB/RIF, improve accuracy and the cost of diagnosis in a resource-poor setting? Eur Respir J 40: 161168.[Crossref] [Google Scholar]
  36. Suchindran S, Brouwer ES, Van Rie A, , 2009. Is HIV infection a risk factor for multi-drug resistant tuberculosis? A systematic review. PLoS ONE 4: e5561.[Crossref] [Google Scholar]
  37. Simons S, van Ingen J, van der Laan T, Mulder A, Dekhuijzen P, Boeree M, van Soolingen D, , 2011. Validation of pncA gene sequencing in combination with the MGIT method to test susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 50: 428434.[Crossref] [Google Scholar]
  38. Devasia R, Blackman A, May C, Eden S, Smith T, Hooper N, Maruri F, Stratton C, Shintani A, Sterling T, , 2009. Fluoroquinolone resistance in Mycobacterium tuberculosis: an assessment of MGIT 960, MODS and nitrate reductase assay and fluoroquinolone cross-resistance. J Antimicrob Chemother 63: 11731178.[Crossref] [Google Scholar]
  39. Seoudi N, Mitchell SL, Brown TJ, Dashti F, Amin AK, Drobniewski FA, , 2012. Rapid molecular detection of tuberculosis and rifampicin drug resistance: retrospective analysis of a national UK molecular service over the last decade. Thorax 67: 361367.[Crossref] [Google Scholar]
  • Received : 15 Feb 2012
  • Accepted : 03 May 2012
  • Published online : 01 Aug 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error