Volume 87, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We surveyed the genetic ancestry and recorded the occurrence of autogeny, the developmental times, and survival rates in families of in Santa Clara County, CA, at 37°N latitude. Females in 95% of the families produced fertile egg rafts without access to blood (= autogeny) after mating in stenogamous conditions. Developmental time, survival, and egg raft production were closely correlated to temperature. Male DV/D ratios overwhelmingly matched but a microsatellite analysis revealed these were form molestus hybridized with and to a lesser extent to form pipiens, a genetic mix heretofore not recorded elsewhere. Greater DV/D ratios and larger proportions of genetic ancestry from were negatively correlated to autogeny. The combination of multiple overwintering strategies and widespread autogeny in females arising from aboveground larval sites supports the hypothesis that some North American populations of complex mosquitoes express unusual phenologies.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kramer LD, Styer LM, Ebel GD, , 2008. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53: 6181.[Crossref] [Google Scholar]
  2. Mattingly PF, , 1967. The systematics of the Culex pipiens complex. Bull World Health Organ 37: 257261. [Google Scholar]
  3. Knight KL, , 1978. Supplement to the Catalog of the Mosquitoes of the World (Diptera: Culicidae). Lanham, MD: Entomological Society of America. [Google Scholar]
  4. Barr AR, , 1957. The distribution of Culex p. pipiens and Culex p. quinquefasciatus in North America. Am J Trop Med Hyg 6: 153165. [Google Scholar]
  5. Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A, , 2011. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11: 15771585.[Crossref] [Google Scholar]
  6. Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC, , 2006. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74: 284289. [Google Scholar]
  7. Lounibos LP, , 2002. Invasions by insect vectors of human disease. Annu Rev Entomol 47: 233266.[Crossref] [Google Scholar]
  8. Cornel AJ, Mcabee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M, , 2003. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40: 3651.[Crossref] [Google Scholar]
  9. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, , 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.[Crossref] [Google Scholar]
  10. Fonseca DM, Smith JL, Kim HC, Mogi M, , 2009. Population genetics of the mosquito Culex pipiens pallens reveals sex-linked asymmetric introgression by Culex quinquefasciatus . Infect Genet Evol 9: 11971203.[Crossref] [Google Scholar]
  11. Kothera L, Zimmerman EM, Richards CM, Savage HM, , 2009. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a north-south transect in the central United States. J Med Entomol 46: 236248.[Crossref] [Google Scholar]
  12. Urbanelli S, Silvestrini F, Reisen WK, De Vito E, Bullini L, , 1997. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera:Culicidae). J Med Entomol 34: 116127.[Crossref] [Google Scholar]
  13. Urbanelli S, Silvestrini F, Sabatinelli G, Raveloarifera F, Petrarca V, Bullini L, , 1995. Characterization of the Culex pipiens complex (Diptera: Culicidae) in Madagascar. J Med Entomol 32: 778786.[Crossref] [Google Scholar]
  14. Raymond M, Callaghan A, Fort P, Pasteur N, , 1991. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350: 151153.[Crossref] [Google Scholar]
  15. Bataille A, Cunningham AA, Cedeno V, Cruz M, Eastwood G, Fonseca DM, Causton CE, Azuero R, Loayza J, Martinez JD, Goodman SJ, , 2009. Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands. Proc Biol Sci 276: 37693775.[Crossref] [Google Scholar]
  16. Harbach RE, Dahl C, White GB, , 1985. Culex (Culex) pipiens Linnaeus (Diptera: Culicidae): concepts, type designations, and description. Proc Entomol Soc Wash 87: 124. [Google Scholar]
  17. Gad AM, Farid HA, Ramzy RR, Riad MB, Presley SM, Cope SE, Hassan MM, Hassan AN, , 1999. Host feeding of mosquitoes (Diptera: Culicidae) associated with the recurrence of Rift Valley fever in Egypt. J Med Entomol 36: 709714.[Crossref] [Google Scholar]
  18. Harbach RE, Harrison BA, Gad AM, , 1984. Culex (Culex) molestus Forskal (Diptera: Culicidae): neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash 86: 521542. [Google Scholar]
  19. Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Corte-Real AR, Salgueiro P, Donnelly MJ, Almeida AP, Pinto J, , 2009. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 9: 262.[Crossref] [Google Scholar]
  20. Bahnck CM, Fonseca DM, , 2006. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg 75: 251255. [Google Scholar]
  21. Huang S, Molaei G, Andreadis TG, , 2008. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 79: 518527. [Google Scholar]
  22. Spielman A, , 1971. Studies on autogeny in natural populations of Culex pipiens. II. Seasonal abundance of autogenous and anautogenous populations. J Med Entomol 8: 555561.[Crossref] [Google Scholar]
  23. Spielman A, , 1971. Bionomics of autogenous mosquitoes. Annu Rev Entomol 16: 231248.[Crossref] [Google Scholar]
  24. Gad AM, Abdel Kader M, Farid HA, Hassan AN, , 1995. Absence of mating barriers between autogenous and anautogenous Culex pipiens L. in Egypt. J Egypt Soc Parasitol 25: 6371. [Google Scholar]
  25. Oda T, Fujita K, , 1986. A short review of the ecology of Culex pipiens molestus in Japan: oviposition activity in open water. Tropical Medicine 28: 7378. [Google Scholar]
  26. Dobrotworsky NV, , 1967. The problem of the Culex pipiens complex in the South Pacific (including Australia). Bull World Health Organ 37: 251255. [Google Scholar]
  27. Kassim NF, Webb CE, Russell RC, , 2011. Culex molestus Forskal (Diptera: Culicidae) in Australia: colonization, stenogamy, autogeny, oviposition and larval development. Aust J Entomol 51: 6777.[Crossref] [Google Scholar]
  28. Iltis WG, , 1966. Biosystematics of the Culex pipiens Complex in Northern California. Davis, CA: University of California. [Google Scholar]
  29. Konrad SK, Miller SN, Reeves WK, Tietze NS, , 2009. Spatially explicit West Nile virus risk modeling in Santa Clara County, California. Vector Borne Zoonotic Dis 9: 267274.[Crossref] [Google Scholar]
  30. Cummings RF, , 1992. Design and use of a modified Reiter gravid mosquito trap for mosquito-borne encephalitis surveillance in Los Angeles County, California. Proceedings of the California Mosquito and Vector Control Association 60: 170176. [Google Scholar]
  31. Jakob WL, Francy DB, , 1984. Observations on the DV/D ratio of male genitalia of Culex pipiens complex mosquitoes in the United States. Mosq Syst 16: 282288. [Google Scholar]
  32. Service MW, , 1976. Mosquito Ecology Field Sampling Methods. New York: John Wiley & Sons. [Google Scholar]
  33. Pruess KP, , 1983. Day-degree methods for pest management. Environ Entomol 12: 613619.[Crossref] [Google Scholar]
  34. WHO, 1975. Manual on Practical Entomology in Malaria. Part II: Methods and Techniques. Geneva: World Health Organization. [Google Scholar]
  35. Mitchell CJ, Briegel H, , 1989. Inability of diapausing Culex pipiens (Diptera: Culicidae) to use blood for producing lipid reserves for overwinter survival. J Med Entomol 26: 318326.[Crossref] [Google Scholar]
  36. Reisen WK, Thiemann T, Barker CM, Lu H, Carroll B, Fang Y, Lothrop HD, , 2010. Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. J Med Entomol 47: 230237.[Crossref] [Google Scholar]
  37. Mitchell CJ, Briegel H, , 1989. Fate of the blood meal in force-fed, diapausing Culex pipiens (Diptera: Culicidae). J Med Entomol 26: 332341.[Crossref] [Google Scholar]
  38. Smith JL, Fonseca DM, , 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345. [Google Scholar]
  39. Fonseca DM, Atkinson CT, Fleischer RC, , 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7: 16171619. [Google Scholar]
  40. Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, , 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.[Crossref] [Google Scholar]
  41. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  42. Pritchard JK, Donnelly P, , 2001. Case-control studies of association in structured or admixed populations. Theor Popul Biol 60: 227237.[Crossref] [Google Scholar]
  43. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW, , 2002. Genetic structure of human populations. Science 298: 23812385.[Crossref] [Google Scholar]
  44. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.[Crossref] [Google Scholar]
  45. Huang S, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, , 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref] [Google Scholar]
  46. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, , 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671. [Google Scholar]
  47. Mead SS, Conner GE, , 1987. Temperature-related growth and mortality rates of four mosquito species. In: Proc Pap 55th Annu Conf Calif Mosq Vector Control Assoc, 133137. [Google Scholar]
  48. Rueda LM, Patel KJ, Axtell RC, Stinner RE, , 1990. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27: 892898.[Crossref] [Google Scholar]
  49. Madder DJ, Surgeoner GA, Helson BV, , 1983. Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in southern Ontario. J Med Entomol 20: 275287.[Crossref] [Google Scholar]
  50. Mitchell CJ, , 1983. Differentiation of host-seeking behavior from blood-feeding behavior in overwintering Culex pipiens (Diptera: Culicidae) and observations on gonotrophic dissociation. J Med Entomol 20: 157163.[Crossref] [Google Scholar]
  51. Strickman D, , 1988. Rate of oviposition by Culex quinquefasciatus in San Antonio, Texas, during three years. J Am Mosq Control Assoc 4: 339344. [Google Scholar]
  52. Strickman D, Lang JT, , 1986. Activity of Culex quinquefasciatus in an underground storm drain in San Antonio, Texas. J Am Mosq Control Assoc 2: 379381. [Google Scholar]

Data & Media loading...

  • Received : 02 Feb 2012
  • Accepted : 29 Jun 2012
  • Published online : 03 Oct 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error