Volume 88, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses ( flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (, , , and ), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2009. Dengue and Dengue Hemorrhagic Fever Key Facts Sheet. Available at: http://www.who.int.mediacentre/factsheets/fs117/en/. Accessed June 8, 2011. [Google Scholar]
  2. Weaver SC, Reisen WK, , 2010. Present and future arboviral threats. Antiviral Res 82: 328.[Crossref] [Google Scholar]
  3. Kuno G, Chang GJ, , 2005. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18: 608637.[Crossref] [Google Scholar]
  4. Sim S, Ramirez JL, Dimopoulos G, , 2009. Molecular discrimination of mosquito vectors and their pathogens. Expert Rev Mol Diagn 9: 757765.[Crossref] [Google Scholar]
  5. Sellin Jeffries MK, Mehinto AC, Carter B, Denslow ND, Kolok AS, , 2011. Taking microarrays to the field: differential hepatic gene expression of caged fathead minnows from Nebraska watersheds. Environ Sci Technol 46: 18771885.[Crossref] [Google Scholar]
  6. Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverría A, Urtuvia VN, Ruiz-Bermejo M, García-Villadangos M, Postigo M, Sánchez-Román M, Chong-Díaz G, Gómez-Elvira J, , 2011. A microbial oasis in the hypersaline Atacama subsurface discovered by a Life Detector Chip: implications for the search for life on Mars. Astrobiology 11: 969996.[Crossref] [Google Scholar]
  7. Chandler DP, Kukhtin A, Mokhiber R, Knickerbocker C, Ogles D, Rudy G, Golova J, Long P, Peacock A, , 2010. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. Environ Sci Technol 44: 55165522.[Crossref] [Google Scholar]
  8. Roth KM, Peyvan K, Schwarzkopf KR, Ghindilis AL, , 2006. Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix microarray reader. Electroanalysis 18: 19821988.[Crossref] [Google Scholar]
  9. Ghindilis AL, Smith MW, Schwarzkopf KR, Roth KM, Peyvan K, Munro SB, Lodes MJ, Stover AG, Bernards K, Dill K, McShea A, , 2007. CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron 22: 18531860.[Crossref] [Google Scholar]
  10. Lodes MJ, Suciu D, Elliot M, Stover AG, Ross M, Caraballo M, Dix K, Crye J, Webby RJ, Lyon WJ, Danley DL, McShea A, , 2006. Use of semiconductor-based oligonucleotide microarray for Influenza A virus subtype identification and sequencing. J Clin Microbiol 44: 12091218.[Crossref] [Google Scholar]
  11. Gurrala R, Dastjerdi A, Johnson N, Nunez-Garcia J, Greirson S, Steinbach F, Banks M, , 2009. Development of a DNA microarray for simultaneous detection and genotyping of lyssaviruses. Virus Res 144: 202208.[Crossref] [Google Scholar]
  12. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL, , 2002. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99: 1568715692.[Crossref] [Google Scholar]
  13. Korimbocus J, Scaramozzino N, Lacroix B, Crance JM, Garin D, Vernet G, , 2005. DNA probe array for the simultaneous identification of herpesviruses, enteroviruses, and flaviviruses. J Clin Microbiol 43: 37793787.[Crossref] [Google Scholar]
  14. Nordstrom H, Falk KI, Lindegren G, Mouzavi-Jazi M, Walden A, Elgh F, Nilsson P, Lundkvist A, , 2005. DNA microarray technique for detection and identification of seven flaviviruses pathogenic for man. J Med Virol 77: 528540.[Crossref] [Google Scholar]
  15. Chou C, Lee T, Chen C, Hsiao H, Lin Y, Ho M, Yang P, Peck K, , 2006. Design of microarray probes for virus identification and detection of emerging viruses at the genus level. BMC Bioinfo 7: 232.[Crossref] [Google Scholar]
  16. Putonti C, Chumakov S, Mitra R, Fox GE, Wilson RC, Fofanov Y, , 2006. Human-blind probes and primers for dengue virus identification. FEBS J 273: 398408.[Crossref] [Google Scholar]
  17. Xiao-Ping K, Yong-Qiang L, Qing-Ge S, Hong L, Quing-Yu Z, Yin-Hui Y, , 2009. Development of a consensus microarray method for identification of some highly pathogenic viruses. J Med Virol 81: 19451950.[Crossref] [Google Scholar]
  18. Deblauwe I, De Witte JC, De Deken G, De Deken R, Madder M, Van Erk S, Hoza FA, Lathouwers D, Geysen D, , 2012. A new tool for the molecular identification of Culicoides species of the Obsoletus group: the glass slide microarray approach. Med Vet Entomol 26: 8391.[Crossref] [Google Scholar]
  19. O'Guinn ML, Lee JS, Kondig JP, Fernandez R, Carbajal F, , 2004. Field detection of Eastern equine encephalitis virus in the Amazon Basin region of Peru using reverse transcription-polymerase chain reaction adapted for field identification of arthropod-borne pathogens. Am J Trop Med Hyg 70: 164171. [Google Scholar]
  20. Wojciechowski J, Chase-Baldwin K, Wasieloski LP, Padilla S, Vora GJ, Taitt CR, , 2010. Enhancement of deoxyribonucleic acid microarray performance using post-hybridization signal amplification. Anal Chem 679: 8590. [Google Scholar]
  21. Rosen L, Gubler D, , 1974. The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23: 11531160. [Google Scholar]
  22. Chao D, Davis BS, Chang GJ, , 2007. Development of multiplex real-time reverse transcriptase PCR assays for detecting eight medically important flaviviruses in mosquitoes. J Clin Microbiol 45: 584589.[Crossref] [Google Scholar]
  23. Chen EC, Miller SA, DeRisi JL, Chiu CY, , 2011. Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp 50: 2536. [Google Scholar]
  24. Cicero C, Johnson NK, , 2001. Higher-level phylogeny of new world vireo (Aves: Vireonidae) based on sequences of multiple mictochondrial DNA genes. Mol Phylogenet Evol 20: 2740.[Crossref] [Google Scholar]
  25. Ngo KA, Kramer LD, , 2004. Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40: 215222.[Crossref] [Google Scholar]
  26. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrink CR, , 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, Northeastern United States. Emerg Infect Dis 12: 468474.[Crossref] [Google Scholar]
  27. Kuno G, , 1998. Universal diagnostic RT-PCR protocol for arboviruses. J Virol Methods 72: 2741.[Crossref] [Google Scholar]
  28. Chiu YC, Rouskin S, Koshy A, Urisman A, Fischer K, Yagi S, Schnurr D, Eckburg PB, Tompkins LS, Blackburn BG, Merker JD, Patterson BK, Ganem D, DeRisi JL, , 2006. Microarray detection of human parainflueza virus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis 43: e71e76.[Crossref] [Google Scholar]
  29. Vora GJ, Meador CE, Stenger DA, Andreadis JD, , 2004. Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl Environ Microbiol 70: 30473054.[Crossref] [Google Scholar]
  30. Straight TM, Merrill G, Perez L, Livezey J, Robinson B, Lodes M, Suciu D, Anderson B, , 2010. A novel electrochemical device to differentiate pandemic (H1N1) 2009 from seasonal influenza. Influenza Other Respir Viruses 4: 7379.[Crossref] [Google Scholar]
  31. Kambhampati S, Black WC, 4th Rai KS, , 1992. Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): techniques, statistical analysis, and applications. J Med Entomol 29: 939945.[Crossref] [Google Scholar]
  32. Bass C, Williamson MS, Wilding CS, Donnelly MJ, Field LM, , 2007. Identification of the main malaria vectors in the Anopheles gambiae species complex using a TaqMan real-time PCR assay. Malar J 6: 155.[Crossref] [Google Scholar]
  33. Higa Y, Toma T, Tsuda Y, Miyagi I, , 2010. A multiplex PCR-based molecular identification of five morphologically related, medically important subgenus Stegomyia mosquitoes for the genus Aedes (Diptera: Culicidae) found in the Ryukyu Archipelago, Japan. Jpn J Infect Dis 63: 312316. [Google Scholar]
  34. Mora C, Tittensor DP, Adi S, Simpson AGB, Worm B, , 2011. How many species are there on earth and in the ocean? PLoS Biol 9: el001127. [Google Scholar]
  35. Kent RJ, , 2009. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9: 418.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary EXCEL

  • Received : 20 Jan 2012
  • Accepted : 19 Oct 2012
  • Published online : 06 Feb 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error