Volume 87, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The glycosylphosphatidylinositol (GPI)-anchored mucins of trypomastigotes play an important immunomodulatory role during the course of Chagas disease. Here, some biological activities of tGPI-mucins from four isolates, including benznidazole-susceptible (BZS-Y), benznidazole-resistant (BZR-Y), CL, and Colombiana, were evaluated. GPI-mucins were able to differentially trigger the production of interleukin-12 and nitric oxide in BALB/c macrophages and modulate LLC-MK2 cell invasion. The significance of these variations was assessed after analysis of the terminal α-galactosyl residues. Enzymatic treatment with α-galactosidase indicated a differential expression of -linked α-galactosyl residues among the strains, with higher expression of this sugar in BZS-Y and BZR-Y populations followed by Colombiana and CL. Unweighted pair group method analysis of the carbohydrate anchor profile and biological parameters allowed the clustering of two groups. One group includes Y and CL strains ( II and VI), and the other group is represented by Colombiana strain ( I).


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Dias JC, , 2009. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 104 (Suppl 1): 4145.[Crossref] [Google Scholar]
  2. Rassi A, Jr Rassi A, Marin-Neto JA, , 2010. Chagas disease. Lancet 375: 13881402.[Crossref] [Google Scholar]
  3. Urbina JA, Docampo R, , 2003. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19: 495501.[Crossref] [Google Scholar]
  4. Docampo R, , 1990. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact 73: 127.[Crossref] [Google Scholar]
  5. Filardi LS, Brener Z, , 1987. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg 81: 755759.[Crossref] [Google Scholar]
  6. Murta SM, Romanha AJ, , 1998. In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitology 116: 165171.[Crossref] [Google Scholar]
  7. Toledo M, Tafuri W, Bahia MT, Tibayrenc M, Lana M, , 2004. Genetic diversity and drug resistance in Trypanosoma cruzi, the agent of Chagas disease. Antimicrob Agents Chemother 4: 1122. [Google Scholar]
  8. Gazzinelli RT, Ropert C, Campos MA, , 2004. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites. Immunol Rev 201: 925.[Crossref] [Google Scholar]
  9. Andrade LO, Andrews NW, , 2005. The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3: 819823.[Crossref] [Google Scholar]
  10. Almeida IC, Gazzinelli RT, , 2001. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J Leukoc Biol 70: 467477. [Google Scholar]
  11. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B, , 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409–  415.[Crossref] [Google Scholar]
  12. Buscaglia CA, Campo VA, Di Noia JM, Torrecilhas AC, De Marchi CR, Ferguson MA, Frasch AC, Almeida IC, , 2004. The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J Biol Chem 279: 1586015869.[Crossref] [Google Scholar]
  13. Nakayasu ES, Sobreira TJ, Torres R, Jr Ganiko L, Oliveira PS, Marques AF, Almeida IC, , 2012. Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi . J Proteome Res 11: 237246.[Crossref] [Google Scholar]
  14. Acosta-Serrano A, Hutchinson C, Nakayasu ES, Almeida IC, Carrington M, Barry JD, Mottram JC, McCulloch R, Acosta-Serrano A, , 2007. Comparison and evolution of the surface architecture of trypanosomatid parasites. , eds. Trypanosomes: After the Genome. Norwich, United Kingdom: Horizon Scientific Press, 319337. [Google Scholar]
  15. Almeida IC, Ferguson MA, Schenkman S, Travassos LR, , 1994. Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas' disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi . Biochem J 304: 793802.[Crossref] [Google Scholar]
  16. Almeida IC, Camargo MM, Procopio DO, Silva LS, Mehlert A, Travassos LR, Gazzinelli RT, Ferguson MA, , 2000. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J 19: 14761485.[Crossref] [Google Scholar]
  17. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT, , 2001. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167: 416423.[Crossref] [Google Scholar]
  18. Gazzinelli RT, Denkers EY, , 2006. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 6: 895906.[Crossref] [Google Scholar]
  19. Schenkman S, Eichinger D, Pereira ME, Nussenzweig V, , 1994. Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol 48: 499523.[Crossref] [Google Scholar]
  20. Frasch AC, , 2000. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi . Parasitol Today 16: 282286.[Crossref] [Google Scholar]
  21. Almeida IC, Milani SR, Gorin PA, Travassos LR, , 1991. Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol 146: 23942400. [Google Scholar]
  22. Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA, , 1995. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 270: 2724427253.[Crossref] [Google Scholar]
  23. Previato JO, Jones C, Xavier MT, Wait R, Travassos LR, Parodi AJ, Mendonca-Previato L, , 1995. Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem 270: 72417250.[Crossref] [Google Scholar]
  24. Todeschini AR, da Silveira EX, Jones C, Wait R, Previato JO, Mendonca-Previato L, , 2001. Structure of O-glycosidically linked oligosaccharides from glycoproteins of Trypanosoma cruzi CL-Brener strain: evidence for the presence of O-linked sialyl-oligosaccharides. Glycobiology 11: 4755.[Crossref] [Google Scholar]
  25. Todeschini AR, de Almeida EG, Agrellos OA, Jones C, Previato JO, Mendonca-Previato L, , 2009. Alpha-N-acetylglucosamine-linked O-glycans of sialoglycoproteins (Tc-mucins) from Trypanosoma cruzi Colombiana strain. Mem Inst Oswaldo Cruz 104 (Suppl 1): 270274.[Crossref] [Google Scholar]
  26. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, Second Satellite M, , 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054.[Crossref] [Google Scholar]
  27. Camargo EP, , 1964. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 12: 93100. [Google Scholar]
  28. Andrews NW, Colli W, , 1982. Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29: 264 – 269.[Crossref] [Google Scholar]
  29. Uphoff CC, Drexler HG, , 2005. Detection of mycoplasma contaminations. Methods Mol Biol 290: 1323. [Google Scholar]
  30. Ernest D, Olfert DVM, Brenda M, Cross DVM, McWilliam AA, , 1993. Guide to the Care and Use of Experimental Animals. Ottawa, Ontario, Canada: Canadian Council on Animal Care. [Google Scholar]
  31. Camargo MM, Almeida IC, Pereira ME, Ferguson MA, Travassos LR, Gazzinelli RT, , 1997. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J Immunol 158: 58905901. [Google Scholar]
  32. Vespa GN, Cunha FQ, Silva JS, , 1994. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro . Infect Immun 62: 51775182. [Google Scholar]
  33. Almeida IC, Covas DT, Soussumi LM, Travassos LR, , 1997. A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 37: 850857.[Crossref] [Google Scholar]
  34. Soares RP, Barron T, McCoy-Simandle K, Svobodova M, Warburg A, Turco SJ, , 2004. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol 107: 105114.[Crossref] [Google Scholar]
  35. Rocha MN, Margonari C, Presot IM, Soares RP, , 2010. Evaluation of 4 polymerase chain reaction protocols for cultured Leishmania spp. typing. Diagn Microbiol Infect Dis 68: 401409.[Crossref] [Google Scholar]
  36. Dice LR, , 1945. Measures of the amount of ecological association between species. Ecology 26: 297302.[Crossref] [Google Scholar]
  37. Camargo MM, Andrade AC, Almeida IC, Travassos LR, Gazzinelli RT, , 1997. Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-gamma-primed macrophages. J Immunol 159: 61316139. [Google Scholar]
  38. Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, de Souza W, E Silva NC, de Almeida Abrahamsohn I, Colli W, Manso Alves MJ, , 2009. Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11: 2939.[Crossref] [Google Scholar]
  39. Freitas JM, Lages-Silva E, Crema E, Pena SD, Macedo AM, , 2005. Real time PCR strategy for the identification of major lineages of Trypanosoma cruzi directly in chronically infected human tissues. Int J Parasitol 35: 411417.[Crossref] [Google Scholar]
  40. McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD, , 2002. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66: 122154.[Crossref] [Google Scholar]
  41. Dobson DE, Scholtes LD, Valdez KE, Sullivan DR, Mengeling BJ, Cilmi S, Turco SJ, Beverley SM, , 2003. Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J Biol Chem 278: 1552315531.[Crossref] [Google Scholar]
  42. Segawa H, Soares RP, Kawakita M, Beverley SM, Turco SJ, , 2005. Reconstitution of GDP-mannose transport activity with purified Leishmania LPG2 protein in liposomes. J Biol Chem 280: 20282035.[Crossref] [Google Scholar]
  43. Miletti LC, Koerich LB, Pacheco LK, Steindel M, Stambuk BU, , 2006. Characterization of D-glucose transport in Trypanosoma rangeli . Parasitology 133: 721727.[Crossref] [Google Scholar]
  44. Tetaud E, Chabas S, Giroud C, Barrett MP, Baltz T, , 1996. Hexose uptake in Trypanosoma cruzi: structure-activity relationship between substrate and transporter. Biochem J 317: 353359.[Crossref] [Google Scholar]
  45. Oliveira MM, Einicker-Lamas M, , 2000. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease. An Acad Bras Cienc 72: 413419.[Crossref] [Google Scholar]
  46. Gagneux P, Varki A, , 1999. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9: 747755.[Crossref] [Google Scholar]
  47. Burleigh BA, Woolsey AM, , 2002. Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol 4: 701711.[Crossref] [Google Scholar]
  48. Colli W, , 1993. Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi . FASEB J 7: 12571264. [Google Scholar]
  49. Eugenia Giorgi M, de Lederkremer RM, , 2011. Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 346: 13891393.[Crossref] [Google Scholar]
  50. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM, , 2006. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4: 229236.[Crossref] [Google Scholar]
  51. Almeida IC, Krautz GM, Krettli AU, Travassos LR, , 1993. Glycoconjugates of Trypanosoma cruzi: a 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J Clin Lab Anal 7: 307316.[Crossref] [Google Scholar]
  52. Pereira-Chioccola VL, Acosta-Serrano A, Correia de Almeida I, Ferguson MA, Souto-Padron T, Rodrigues MM, Travassos LR, Schenkman S, , 2000. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J Cell Sci 113: 12991307. [Google Scholar]
  53. Previato JO, Jones C, Goncalves LP, Wait R, Travassos LR, Mendonca-Previato L, , 1994. O-glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi . Biochem J 301: 151159.[Crossref] [Google Scholar]
  54. Campos MA, Closel M, Valente EP, Cardoso JE, Akira S, Alvarez-Leite JI, Ropert C, Gazzinelli RT, , 2004. Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J Immunol 172: 17111718.[Crossref] [Google Scholar]
  55. Ropert C, Almeida IC, Closel M, Travassos LR, Ferguson MA, Cohen P, Gazzinelli RT, , 2001. Requirement of mitogen-activated protein kinases and I kappa B phosphorylation for induction of proinflammatory cytokines synthesis by macrophages indicates functional similarity of receptors triggered by glycosylphosphatidylinositol anchors from parasitic protozoa and bacterial lipopolysaccharide. J Immunol 166: 34233431.[Crossref] [Google Scholar]
  56. Ropert C, Closel M, Chaves AC, Gazzinelli RT, , 2003. Inhibition of a p38/stress-activated protein kinase-2-dependent phosphatase restores function of IL-1 receptor-associate kinase-1 and reverses Toll-like receptor 2- and 4-dependent tolerance of macrophages. J Immunol 171: 14561465.[Crossref] [Google Scholar]
  57. Ferguson MA, , 1999. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112: 27992809. [Google Scholar]
  58. van Kooyk Y, Rabinovich GA, , 2008. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9: 593601.[Crossref] [Google Scholar]
  59. Proudfoot L, Nikolaev AV, Feng GJ, Wei WQ, Ferguson MA, Brimacombe JS, Liew FY, , 1996. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci USA 93: 1098410989.[Crossref] [Google Scholar]
  60. Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, Pimenta PF, Turco SJ, Soares RP, , 2011. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol 41: 333342.[Crossref] [Google Scholar]
  61. Carreira JC, Jones C, Wait R, Previato JO, Mendonca-Previato L, , 1996. Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi . Glycoconj J 13: 955966.[Crossref] [Google Scholar]
  62. Galili U, Rachmilewitz EA, Peleg A, Flechner I, , 1984. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 160: 15191531.[Crossref] [Google Scholar]
  63. Avila JL, Rojas M, Galili U, , 1989. Immunogenic Gal alpha 1-3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania . J Immunol 142: 28282834. [Google Scholar]
  64. Gazzinelli RT, Pereira ME, Romanha A, Gazzinelli G, Brener Z, , 1991. Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol 13: 345356.[Crossref] [Google Scholar]
  65. Murta SM, Ropert C, Alves RO, Gazzinelli RT, Romanha AJ, , 1999. In-vivo treatment with benznidazole enhances phagocytosis, parasite destruction and cytokine release by macrophages during infection with a drug-susceptible but not with a derived drug-resistant Trypanosoma cruzi population. Parasite Immunol 21: 535544.[Crossref] [Google Scholar]
  66. Murta SM, dos Santos WG, Anacleto C, Nirde P, Moreira ES, Romanha AJ, , 2001. Drug resistance in Trypanosoma cruzi is not associated with amplification or overexpression of P-glycoprotein (PGP) genes. Mol Biochem Parasitol 117: 223228.[Crossref] [Google Scholar]
  67. Murta SM, Krieger MA, Montenegro LR, Campos FF, Probst CM, Avila AR, Muto NH, de Oliveira RC, Nunes LR, Nirde P, Bruna-Romero O, Goldenberg S, Romanha AJ, , 2006. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi . Mol Biochem Parasitol 146: 151162.[Crossref] [Google Scholar]
  68. Rego JV, Murta SM, Nirde P, Nogueira FB, de Andrade HM, Romanha AJ, , 2008. Trypanosoma cruzi: characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol 118: 111117.[Crossref] [Google Scholar]
  69. Nogueira FB, Ruiz JC, Robello C, Romanha AJ, Murta SM, , 2009. Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitol Res 104: 835844.[Crossref] [Google Scholar]
  70. Andrade HM, Murta SM, Chapeaurouge A, Perales J, Nirde P, Romanha AJ, , 2008. Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J Proteome Res 7: 23572367.[Crossref] [Google Scholar]
  71. Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B, , 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi . Mol Biochem Parasitol 83: 141152.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 06 Jan 2012
  • Accepted : 07 Apr 2012
  • Published online : 02 Jul 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error