Volume 86, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is a Hemiptera that belongs to the complex, a vector of Chagas' disease that feeds on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SGs) produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. Exposure to was also found to be a risk factor associated with the endemic form of the autoimmune skin disease pemphigus foliaceus, which is described in the same regions where Chagas' disease is observed in Brazil. To obtain a further insight into the salivary biochemical and pharmacologic diversity of this kissing bug and to identify possible allergens that might be associated with this autoimmune disease, a cDNA library from its SGs was randomly sequenced. We present the analysis of a set of 2,230 (SG) cDNA sequences, 1,182 of which coded for proteins of a putative secretory nature.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Carcavallo RU, Jurberg J, Lent H, Galvao C, Steindel M, Carvalho Pinto CJ, , 2001. A new species of the oliveirai complex (new designation for matogrossensis complex) from the State of Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz 96: 7179.[Crossref] [Google Scholar]
  2. Noireau F, dos Santos SM, Gumiel M, Dujardin JP, dos Santos Soares M, Carcavallo RU, Galvao C, Jurberg J, , 2002. Phylogenetic relationships within the oliveirai complex (Hemiptera:Reduviidae:Triatominae). Infect Genet Evol 2: 1117.[Crossref] [Google Scholar]
  3. Neiva A, Pinto C, Lent H, , 1939. Notas sobre triatomídeos do Rio Grande do Sul e descrição de uma nova espécie. Mem Inst Oswaldo Cruz 34: 607610.[Crossref] [Google Scholar]
  4. Lent H, Wygodzinsky P, , 1979. Revision of the Triatominae (Hemiptera:Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163: 127520. [Google Scholar]
  5. Carcavallo RU, Jurberg J, Rocha Dda S, Galvao C, Noireau F, Lent H, , 2002. Triatoma vandae sp.n. of the oliveirai complex from the State of Mato Grosso, Brazil (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 97: 649654.[Crossref] [Google Scholar]
  6. Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvão C, , 2000. Phylogeny of the Triatominae (Hemiptera: Reduviidae). Entomolgía y Vectores 7: 199. [Google Scholar]
  7. Culton DA, Qian Y, Li N, Rubenstein D, Aoki V, Filhio GH, Rivitti EA, Diaz LA, , 2008. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun 31: 311324.[Crossref] [Google Scholar]
  8. Stanley JR, Klaus-Kovtun V, Sampaio SA, , 1986. Antigenic specificity of fogo selvagem autoantibodies is similar to North American pemphigus foliaceus and distinct from pemphigus vulgaris autoantibodies. J Invest Dermatol 87: 197201.[Crossref] [Google Scholar]
  9. Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR, Steinberg M, , 1993. Nomenclature of the desmosomal cadherins. J Cell Biol 121: 481483.[Crossref] [Google Scholar]
  10. Rock B, Martins CR, Theofilopoulos AN, Balderas RS, Anhalt GJ, Labib RS, Futamura S, Rivitti EA, Diaz LA, , 1989. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (fogo selvagem). N Engl J Med 320: 14631469.[Crossref] [Google Scholar]
  11. Diaz LA, Sampaio SA, Rivitti EA, Martins CR, Cunha PR, Lombardi C, Almeida FA, Castro RM, Macca ML, Lavrado C, Filho GH, Borges PC, Chaul A, Minelli L, Empinotti JC, Friedman H, Campbell I, Labib RS, Anhalt FJ, , 1989. Endemic pemphigus foliaceus (Fogo Selvagem): II. Current and historic epidemiologic studies. J Invest Dermatol 92: 412.[Crossref] [Google Scholar]
  12. Diaz LA, Arteaga LA, Hilario-Vargas J, Valenzuela JG, Li N, Warren S, Aoki V, Hans-Filho G, Eaton D, dos Santos V, Nutman TB, de Mayolo AA, Qaqish BF, Sampaio SA, Rivitti EA, , 2004. Anti-desmoglein-1 antibodies in onchocerciasis, leishmaniasis and Chagas disease suggest a possible etiological link to Fogo selvagem. J Invest Dermatol 123: 10451051.[Crossref] [Google Scholar]
  13. Aoki V, Millikan RC, Rivitti EA, Hans-Filho G, Eaton DP, Warren SJ, Li N, Hilario-Vargas J, Hoffmann RG, Diaz LA, , 2004. Environmental risk factors in endemic pemphigus foliaceus (fogo selvagem). J Investig Dermatol Symp Proc 9: 3440.[Crossref] [Google Scholar]
  14. Eaton DP, Diaz LA, Hans-Filho G, Santos VD, Aoki V, Friedman H, Rivitti EA, Sampaio SA, Gottlieb MS, Giudice GJ, Lopez A, Cupp EW, , 1998. Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of fogo selvagem to neighboring disease-free sites in the State of Mato Grosso do Sul, Brazil. The Cooperative Group on Fogo Selvagem Research. J Med Entomol 35: 120131.[Crossref] [Google Scholar]
  15. Lombardi C, Borges PC, Chaul A, Sampaio SA, Rivitti EA, Friedman H, Martins CR, Sanches Junior JA, Cunha PR, Hoffmann RG, Diaz LA, Cooperative Group for Fogo Selvagem Research , 1992. Environmental risk factors in endemic pemphigus foliaceus (Fogo selvagem). J Invest Dermatol 98: 847850.[Crossref] [Google Scholar]
  16. Ribeiro JM, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, Eaton DP, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA, , 2010. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg 82: 10601075.[Crossref] [Google Scholar]
  17. Hans-Filho G, dos Santos V, Katayama JH, Aoki V, Rivitti EA, Sampaio SA, Friedman H, Moraes JR, Moraes ME, Eaton DP, Lopez AL, Hoffman RG, Fairley JA, Giudice GJ, Diaz LA, , 1996. An active focus of high prevalence of fogo selvagem on an Amerindian reservation in Brazil. Cooperative Group on Fogo Selvagem Research. J Invest Dermatol 107: 6875.[Crossref] [Google Scholar]
  18. Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, Valenzuela JG, , 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus . Insect Biochem Mol Biol 34: 6179.[Crossref] [Google Scholar]
  19. Santos A, Ribeiro JM, Lehane MJ, Gontijo NF, Veloso AB, Sant'Anna MR, Nascimento Araujo R, Grisard EC, Pereira MH, , 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem Mol Biol 37: 702712.[Crossref] [Google Scholar]
  20. Assumpção TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM, , 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol 38: 213232.[Crossref] [Google Scholar]
  21. Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, Valenzuela JG, Hashiguchi Y, , 2010. A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol 10: 184191.[Crossref] [Google Scholar]
  22. Assumpcao TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araujo CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA, Santana JM, Ribeiro JM, , 2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima . J Proteome Res 10: 669679.[Crossref] [Google Scholar]
  23. Ribeiro JM, , 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143152. [Google Scholar]
  24. Francischetti IM, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JM, , 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae . J Exp Biol 205: 24292451. [Google Scholar]
  25. Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM, , 2002. Toward a description of the sialome of the adult female mosquito Aedes aegypti . Insect Biochem Mol Biol 32: 11011122.[Crossref] [Google Scholar]
  26. Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM, , 2002. Exploring the sialome of the tick Ixodes scapularis . J Exp Biol 205: 28432864. [Google Scholar]
  27. Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JM, , 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33: 717732.[Crossref] [Google Scholar]
  28. Altschul SF, Gish W, , 1996. Local alignment statistics. Methods Enzymol 266: 460480.[Crossref] [Google Scholar]
  29. Huang X, Madan A, , 1999. CAP3: a DNA sequence assembly program. Genome Res 9: 868877.[Crossref] [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ, , 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.[Crossref] [Google Scholar]
  31. Kumar S, Tamura K, Nei M, , 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150163.[Crossref] [Google Scholar]
  32. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, , 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.[Crossref] [Google Scholar]
  33. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, , 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 2529.[Crossref] [Google Scholar]
  34. Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF, , 2001. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29: 29943005.[Crossref] [Google Scholar]
  35. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL, , 2000. The Pfam protein families database. Nucleic Acids Res 28: 263266.[Crossref] [Google Scholar]
  36. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P, , 2002. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30: 242244.[Crossref] [Google Scholar]
  37. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA, , 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.[Crossref] [Google Scholar]
  38. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH, , 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30: 281283.[Crossref] [Google Scholar]
  39. Nielsen H, Engelbrecht J, Brunak S, von Heijne G, , 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 16.[Crossref] [Google Scholar]
  40. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S, , 1998. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15: 115130.[Crossref] [Google Scholar]
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, , 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.[Crossref] [Google Scholar]
  42. Ribeiro JM, Charlab R, Pham VM, Garfield M, Valenzuela JG, , 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus . Insect Biochem Mol Biol 34: 543563.[Crossref] [Google Scholar]
  43. Calvo E, Dao A, Pham VM, Ribeiro JM, , 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol 37: 164175.[Crossref] [Google Scholar]
  44. Amino R, Tanaka AS, Schenkman S, , 2001. Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31: 465472.[Crossref] [Google Scholar]
  45. Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, Balczun C, , 2010. A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19: 409421.[Crossref] [Google Scholar]
  46. Xu X, Yang H, Ma D, Wu J, Wang Y, Song Y, Wang X, Lu Y, Yang J, Lai R, , 2008. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol Cell Proteomics 7: 582590.[Crossref] [Google Scholar]
  47. Söderhäll K, Cerenius L, , 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10: 2328.[Crossref] [Google Scholar]
  48. Francischetti IM, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM, , 2009. The role of saliva in tick feeding. Front Biosci 14: 20512088.[Crossref] [Google Scholar]
  49. Carolan JC, Fitzroy CI, Ashton PD, Douglas AE, Wilkinson TL, , 2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterized by mass spectrometry. Proteomics 9: 24572467.[Crossref] [Google Scholar]
  50. Gutiérrez JM, Rucavado A, , 2000. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82: 841850.[Crossref] [Google Scholar]
  51. Undheim EA, King GF, , 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 57: 512524.[Crossref] [Google Scholar]
  52. Francischetti IM, Mather TN, Ribeiro JM, , 2003. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis . Biochem Biophys Res Commun 305: 869875.[Crossref] [Google Scholar]
  53. Francischetti IM, Calvo E, Andersen JF, Pham VM, Favreau AJ, Barbian KD, Romero A, Valenzuela JG, Ribeiro JM, , 2010. Insight into the Sialome of the Bed Bug, Cimex lectularius . J Proteome Res 9: 38203831.[Crossref] [Google Scholar]
  54. Assumpção TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araújo CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA, Santana JM, Ribeiro JM, , 2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima . J Proteome Res 10: 669679.[Crossref] [Google Scholar]
  55. Erneux C, Govaerts C, Communi D, Pesesse X, , 1998. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta 1436: 185199.[Crossref] [Google Scholar]
  56. Zhang X, Majerus PW, , 1998. Phosphatidylinositol signalling reactions. Semin Cell Dev Biol 9: 153160.[Crossref] [Google Scholar]
  57. Mitchell CA, Gurung R, Kong AM, Dyson JM, Tan A, Ooms LM, , 2002. Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life 53: 2536.[Crossref] [Google Scholar]
  58. Ribeiro JM, Arca B, , 2009. From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects. Adv Insect Physiol 37: 59118.[Crossref] [Google Scholar]
  59. Faudry E, Lozzi SP, Santana JM, D'Souza-Ault M, Kieffer S, Felix CR, Ricart CA, Sousa MV, Vernet T, Teixeira AR, , 2004. Triatoma infestans apyrases belong to the 5′-nucleotidase family. J Biol Chem 279: 1960719613.[Crossref] [Google Scholar]
  60. Ribeiro JM, Francischetti IM, , 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 7388.[Crossref] [Google Scholar]
  61. Sarkis JJ, Guimaraes JA, Ribeiro JM, , 1986. Salivary apyrase of Rhodnius prolixus. Kinetics and purification. Biochem J 233: 885891.[Crossref] [Google Scholar]
  62. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL, , 2010. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187: 1022.[Crossref] [Google Scholar]
  63. Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM, , 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol 38: 213232.[Crossref] [Google Scholar]
  64. Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, Valenzuela JG, , 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus . Insect Biochem Mol Biol 34: 6179.[Crossref] [Google Scholar]
  65. Flower DR, North AC, Sansom CE, , 2000. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482: 924.[Crossref] [Google Scholar]
  66. Flower DR, , 1995. Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit 8: 185195.[Crossref] [Google Scholar]
  67. Flower DR, , 1996. The lipocalin protein family: structure and function. Biochem J 318: 114.[Crossref] [Google Scholar]
  68. Andersen JF, Gudderra NP, Francischetti IM, Ribeiro JM, , 2005. The role of salivary lipocalins in blood feeding by Rhodnius prolixus . Arch Insect Biochem Physiol 58: 97105.[Crossref] [Google Scholar]
  69. Noeske-Jungblut C, Kratzschmar J, Haendler B, Alagon A, Possani L, Verhallen P, Donner P, Schleuning WD, , 1994. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis . J Biol Chem 269: 50505053. [Google Scholar]
  70. Noeske-Jungblut C, Haendler B, Donner P, Alagon A, Possani L, Schleuning WD, , 1995. Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270: 2862928634.[Crossref] [Google Scholar]
  71. Assumpção TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM, , 2010. Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 285: 3900139012.[Crossref] [Google Scholar]
  72. Paesen GC, Adams PL, Nuttall PA, Stuart DL, , 2000. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta 1482: 92101.[Crossref] [Google Scholar]
  73. Schlott B, Wohnert J, Icke C, Hartmann M, Ramachandran R, Guhrs KH, Glusa E, Flemming J, Gorlach M, Grosse F, Ohlenschlager O, , 2002. Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. J Mol Biol 318: 533546.[Crossref] [Google Scholar]
  74. Stubbs MT, Morenweiser R, Sturzebecher J, Bauer M, Bode W, Huber R, Piechottka GP, Matschiner G, Sommerhoff CP, Fritz H, Auerswald EA, , 1997. The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem 272: 1993119937.[Crossref] [Google Scholar]
  75. van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kroger B, Hoffken W, Bode W, , 1995. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14: 51495157. [Google Scholar]
  76. Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS, , 2006. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673681.[Crossref] [Google Scholar]
  77. Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S, , 2002. Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis. J Biol Chem 277: 62076213.[Crossref] [Google Scholar]
  78. Martins RM, Sforca ML, Amino R, Juliano MA, Oyama S, Jr Juliano L, Pertinhez TA, Spisni A, Schenkman S, , 2006. Lytic activity and structural differences of amphipathic peptides derived from trialysin. Biochemistry 45: 17651774.[Crossref] [Google Scholar]
  79. Megraw T, Kaufman TC, Kovalick GE, , 1998. Sequence and expression of Drosophila Antigen 5-related 2, a new member of the CAP gene family. Gene 222: 297304.[Crossref] [Google Scholar]
  80. Hoffman DR, , 1993. Allergens in Hymenoptera venom. XXV: the amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J Allergy Clin Immunol 92: 707716.[Crossref] [Google Scholar]
  81. King TP, Spangfort MD, , 2000. Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol 123: 99106.[Crossref] [Google Scholar]
  82. Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B, , 1993. Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 75: 687706.[Crossref] [Google Scholar]
  83. Yamazaki Y, Koike H, Sugiyama Y, Motoyoshi K, Wada T, Hishinuma S, Mita M, Morita T, , 2002. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur J Biochem 269: 27082715.[Crossref] [Google Scholar]
  84. Yamazaki Y, Morita T, , 2004. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon 44: 227231.[Crossref] [Google Scholar]
  85. Peter K, Schwarz M, Ylanne J, Kohler B, Moser M, Nordt T, Salbach P, Kubler W, Bode C, , 1998. Induction of fibrinogen binding and platelet aggregation as a potential intrinsic property of various glycoprotein IIb/IIIa (alphaIIbbeta3) inhibitors. Blood 92: 32403249. [Google Scholar]
  86. Ameri M, Wang X, Wilkerson MJ, Kanost MR, Broce AB, , 2008. An immunoglobulin binding protein (antigen 5) of the stable fly (Diptera: Muscidae) salivary gland stimulates bovine immune responses. J Med Entomol 45: 94101.[Crossref] [Google Scholar]
  87. Otti O, Naylor RA, Siva-Jothy MT, Reinhardt K, , 2009. Bacteriolytic activity in the ejaculate of an insect. Am Nat 174: 292295.[Crossref] [Google Scholar]
  88. Mans BJ, Louw AI, Neitz AW, , 2002. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros . Mol Biol Evol 19: 16951705.[Crossref] [Google Scholar]
  89. Schwarz A, Medrano-Mercado N, Billingsley PF, Schaub GA, Sternberg JM, , 2010. IgM-antibody responses of chickens to salivary antigens of Triatoma infestans as early biomarkers for low-level infestation of triatomines. Int J Parasitol 40: 12951302.[Crossref] [Google Scholar]
  90. Schwarz A, Sternberg JM, Johnston V, Medrano-Mercado N, Anderson JM, Hume JC, Valenzuela JG, Schaub GA, Billingsley PF, , 2009. Antibody responses of domestic animals to salivary antigens of Triatomainfestans as biomarkers for low-level infestation of triatomines. Int J Parasitol 39: 10211029.[Crossref] [Google Scholar]
  91. Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JC, Assumpcao TC, Marcus K, Stephan C, Meyer HE, Ribeiro JM, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA, , 2009. Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 3: e532.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary EXCEL

Supplementary EXCEL

  • Received : 03 Nov 2011
  • Accepted : 06 Jan 2012
  • Published online : 01 Jun 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error