1921
Volume 87, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Malaria remains a serious disease in the developing world. There is a growing consensus that new diagnostics are needed in low-resource settings. The ideal malaria diagnostic should be able to speciate; measure parasitemia; low-cost, quick, and simple to use; and capable of detecting low-level infections. A promising development are nucleic acid tests (NATs) for the diagnosis of malaria, which are well suited for point-of-care use because of their ability to detect low-level infections and speciate, and because they have high sensitivity and specificity. The greatest barrier to NAT use in the past has been its relatively high cost, and the amount of infrastructure required in the form of equipment, stable power, and reagent storage. This review describes recent developments to decrease the cost and run time, and increase the ease of use of NAT while maintaining their high sensitivity and specificity and low limit of detection at the point-of-care.

[open-access] This is an Open Access article distributed under the terms and of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.11-0685
2012-08-01
2018-12-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/87/2/223.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0685&mimeType=html&fmt=ahah

References

  1. WHO, 2011. Malaria. Geneva: World Health Organization. [Google Scholar]
  2. Cibulskis RE, Bell D, Christophel EM, Hii J, Delacollette C, Bakyaita N, Aregawi MW, , 2007. Estimating trends in the burden of malaria at country level. Am J Trop Med Hyg 77: 133137. [Google Scholar]
  3. Breman JG, Alilio MS, White NJ, , 2007. Defining and defeating the intolerable burden of malaria. III. progress and perspectives. Am J Trop Med Hyg 77 (Suppl 6): vixi. [Google Scholar]
  4. WHO, 2010. World Malaria Report 2010. Geneva: World Health Organization. [Google Scholar]
  5. Uneke CJ, , 2008. Impact of placental Plasmodium falciparum malaria on pregnancy and perinatal outcome in sub-Saharan Africa: Part III: placental malaria, maternal health, and public health. Yale J Biol Med 81: 17. [Google Scholar]
  6. Matteelli A, Caligaris S, Castelli F, Carosi G, , 1997. The placenta and malaria. Ann Trop Med Parasitol 91: 803810.[Crossref] [Google Scholar]
  7. WHO, 2011. Universal Access to Malaria Diagnostic Testing. Geneva: World Health Organization. [Google Scholar]
  8. Das LK, Jambulingam P, Sadanandane C, , 2008. Impact of community-based presumptive chloroquine treatment of fever cases on malaria morbidity and mortality in a tribal area in Orissa State, India. Malar J 7: 75.[Crossref] [Google Scholar]
  9. Shillcutt S, Morel C, Goodman C, Coleman P, Bell D, Whitty CJ, Mills A, , 2008. Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy. Bull World Health Organ 86: 101110.[Crossref] [Google Scholar]
  10. Pfeiffer K, Some F, Muller O, Sie A, Kouyate B, Haefeli WE, Zoungrana A, Gustafsson LL, Tomson G, Sauerborn R, , 2008. Clinical diagnosis of malaria and the risk of chloroquine self-medication in rural health centres in Burkina Faso. Trop Med Int Health 13: 418426.[Crossref] [Google Scholar]
  11. Duraisingh MT, Refour P, , 2005. Multiple drug resistance genes in malaria: from epistasis to epidemiology. Mol Microbiol 57: 874877.[Crossref] [Google Scholar]
  12. UNICEF UNAIDS Global Partnership to Roll Back Malaria Population Services International Management Services for Health World Health Organization Department of Essential Drugs and Medicines Policy Médicins sans Frontières, 2004. Sources and Prices of Selected Products for the Prevention, Diagnosis and Treatment of Malaria. Geneva: World Health Organization. [Google Scholar]
  13. Drakeley C, Reyburn H, , 2009. Out with the old, in with the new: the utility of rapid diagnostic tests for malaria diagnosis in Africa. Trans R Soc Trop Med Hyg 103: 333337.[Crossref] [Google Scholar]
  14. Guerra CA, Snow RW, Hay SI, , 2006. Mapping the global extent of malaria in 2005. Trends Parasitol 22: 353358.[Crossref] [Google Scholar]
  15. Coll-Black S, Bhushan A, Fritsch K, World Health Organization Regional Office for the Western Pacific, , 2006. Integrating Poverty and Gender into Health Programmes: A Sourcebook for Health Professionals: Module on Malaria. Manila: WHO Regional Office for the Western Pacific. [Google Scholar]
  16. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, , 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434: 214217.[Crossref] [Google Scholar]
  17. Peeling RW, Holmes KK, Mabey D, Ronald A, , 2006. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82: v1v6.[Crossref] [Google Scholar]
  18. Warhurst DC, Williams JE, , 1996. ACP Broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J Clin Pathol 49: 533.[Crossref] [Google Scholar]
  19. Field JW, Shute PG, Sandosham AA, , 1956. The Microscopic Diagnosis of Human Malaria. Kuala Lumpur: Government Press. [Google Scholar]
  20. Kokoskin E, , 2001. The Malaria Manual for Today's Laboratory. Montreal: McGill University Centre for Tropical Diseases. [Google Scholar]
  21. Rodulfo H, De Donato M, Mora R, Gonzalez L, Contreras CE, , 2007. Comparison of the diagnosis of malaria by microscopy, immunochromatography and PCR in endemic areas of Venezuela. Braz J Med Biol Res 40: 535543.[Crossref] [Google Scholar]
  22. Ngasala B, Mubi M, Warsame M, Petzold MG, Massele AY, Gustafsson LL, Tomson G, Premji Z, Bjorkman A, , 2008. Impact of training in clinical and microscopy diagnosis of childhood malaria on antimalarial drug prescription and health outcome at primary health care level in Tanzania: a randomized controlled trial. Malar J 7: 199.[Crossref] [Google Scholar]
  23. Coleman RE, Maneechai N, Rachaphaew N, Kumpitak C, Miller RS, Soyseng V, Thimasarn K, Sattabongkot J, , 2002. Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic Plasmodium falciparum and Plasmodium vivax in western Thailand. Am J Trop Med Hyg 67: 141144. [Google Scholar]
  24. Okell LC, Ghani AC, Lyons E, Drakeley CJ, , 2009. Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis 200: 15091517.[Crossref] [Google Scholar]
  25. Guthmann JP, Ruiz A, Priotto G, Kiguli J, Bonte L, Legros D, , 2002. Validity, reliability and ease of use in the field of five rapid tests for the diagnosis of Plasmodium falciparum malaria in Uganda. Trans R Soc Trop Med Hyg 96: 254257.[Crossref] [Google Scholar]
  26. Bell D, Global Partnership to Roll Back Malaria World Health Organization, Regional Office for the Western Pacific, , 2004. The Use of Malaria Rapid Diagnositc Tests. Geneva: World Health Organization. [Google Scholar]
  27. Lubell Y, Reyburn H, Mbakilwa H, Mwangi R, Chonya K, Whitty CJ, Mills A, , 2007. The cost-effectiveness of parasitologic diagnosis for malaria-suspected patients in an era of combination therapy. Am J Trop Med Hyg 77: 128132. [Google Scholar]
  28. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton C, , 2006. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis 6: 582588.[Crossref] [Google Scholar]
  29. Makler MT, Piper RC, Milhous WK, , 1998. Lactate dehydrogenase and the diagnosis of malaria. Parasitol Today 14: 376377.[Crossref] [Google Scholar]
  30. Ratnawati Hatta M, Smits HL, , 2008. Point-of-care testing for malaria outbreak management. Trans R Soc Trop Med Hyg 102: 699704.[Crossref] [Google Scholar]
  31. Hopkins H, Bebell L, Kambale W, Dokomajilar C, Rosenthal PJ, Dorsey G, , 2008. Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda. J Infect Dis 197: 510518.[Crossref] [Google Scholar]
  32. Endeshaw T, Gebre T, Ngondi J, Graves PM, Shargie EB, Ejigsemahu Y, Ayele B, Yohannes G, Teferi T, Messele A, Zerihun M, Genet A, Mosher AW, Emerson PM, Richards FO, , 2008. Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia. Malar J 7: 118.[Crossref] [Google Scholar]
  33. Bell D, Peeling RW, , 2006. Evaluation of rapid diagnostic tests: malaria. Nat Rev Microbiol 4: S34S38.[Crossref] [Google Scholar]
  34. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH, , 2007. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77: 119127. [Google Scholar]
  35. Murray CK, Bell D, Gasser RA, Wongsrichanalai C, , 2003. Rapid diagnostic testing for malaria. Trop Med Int Health 8: 876883.[Crossref] [Google Scholar]
  36. World Health Organization, Regional Office for the Western Pacific, 2003. Malaria Rapid Diagnosis: Making It Work. Informal Consultation on Field Trials and Quality Assurance on Malaria Rapid Diagnostic Tests. Meeting Report January 20–23, 2003. Manila: WHO Regional Office for the Western Pacific. [Google Scholar]
  37. WHO, 2009. Malaria Rapid Diagnostic Test Performance. Geneva: World Health Organization. [Google Scholar]
  38. Houze S, Hubert V, Le Pessec G, Le Bras J, Clain J, , 2011. Combined deletions of pfhrp2 and pfhrp3 genes result in Plasmodium falciparum malaria false-negative rapid diagnostic test. J Clin Microbiol 49: 26942696.[Crossref] [Google Scholar]
  39. Gamboa D, Ho M-F, Bendezu J, Torres K, Chiodini PL, Barnwell JW, Incardona S, Perkins M, Bell D, McCarthy J, Cheng Q, , 2010. A large proportion of P. falciparum isolates in the Amazon Region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS ONE 5: e8091.[Crossref] [Google Scholar]
  40. Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, McCarthy J, , 2006. Effect of sequence variation in Plasmodium falciparum hjistidine-rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J Clin Microbiol 44: 27732778.[Crossref] [Google Scholar]
  41. Jorgensen P, Chanthap L, Rebueno A, Tsuyuoka R, Bell D, , 2006. Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am J Trop Med Hyg 74: 750754. [Google Scholar]
  42. Hawkes M, Katsuva JP, Masumbuko CK, , 2009. Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo. Malar J 8: 308.[Crossref] [Google Scholar]
  43. Mayxay M, Pukrittayakamee S, Chotivanich K, Looareesuwan S, White NJ, , 2001. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans R Soc Trop Med Hyg 95: 179182.[Crossref] [Google Scholar]
  44. Waitumbi JN, Gerlach J, Afonina I, Anyona SB, Koros JN, Siangla J, Ankoudinova I, Singhal M, Watts K, Polhemus ME, Vermeulen NM, Mahoney W, Steele M, Domingo GJ, , 2011. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season. Trop Med Int Health 16: 786793.[Crossref] [Google Scholar]
  45. Mens P, Spieker N, Omar S, Heijnen M, Schallig H, Kager PA, , 2007. Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Trop Med Int Health 12: 238244. [Google Scholar]
  46. Tahar R, Basco LK, , 1997. Detection of Plasmodium ovale malaria parasites by species-specific 18S rRNA gene amplification. Mol Cell Probes 11: 389395.[Crossref] [Google Scholar]
  47. Das A, Holloway B, Collins WE, Shama VP, Ghosh SK, Sinha S, Hasnain SE, Talwar GP, Lal AA, , 1995. Species-specific 18S rRNA gene amplification for the detection of P. falciparum and P. vivax malaria parasites. Mol Cell Probes 9: 161165.[Crossref] [Google Scholar]
  48. Laufer MK, Thesing PC, Eddington ND, Masonga R, Dzinjalamala FK, Takala SL, Taylor TE, Plowe CV, , 2006. Return of chloroquine antimalarial efficacy in Malawi. N Engl J Med 355: 19591966.[Crossref] [Google Scholar]
  49. Coleman PG, Morel C, Shillcutt S, Goodman C, Mills AJ, , 2004. A threshold analysis of the cost-effectiveness of artemisinin-based combination therapies in sub-Saharan Africa. Am J Trop Med Hyg 71: 196204. [Google Scholar]
  50. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN, , 1993. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 58: 283292.[Crossref] [Google Scholar]
  51. Srinivasan S, Moody AH, Chiodini PL, , 2000. Comparison of blood-film microscopy, the OptiMAL dipstick, rhodamine-123 fluorescence staining and PCR, for monitoring antimalarial treatment. Ann Trop Med Parasitol 94: 227232.[Crossref] [Google Scholar]
  52. McCutchan TF, , 1986. The ribosomal genes of Plasmodium . Int Rev Cytol 99: 295309.[Crossref] [Google Scholar]
  53. Hänscheid T, Grobusch MP, , 2002. How useful is PCR in the diagnosis of malaria? Trends Parasitol 18: 395398.[Crossref] [Google Scholar]
  54. Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, da Silva AJ, , 2006. PCR as a confirmatory technique for laboratory diagnosis of malaria. J Clin Microbiol 44: 10871089.[Crossref] [Google Scholar]
  55. Ndao M, Bandyayera E, Kokoskin E, Gyorkos TW, MacLean JD, Ward BJ, , 2004. Comparison of blood smear, antigen detection, and nested-PCR methods for screening refugees from regions where malaria is endemic after a malaria outbreak in Quebec, Canada. J Clin Microbiol 42: 26942700.[Crossref] [Google Scholar]
  56. Khairnar K, Martin D, Lau R, Ralevski F, Pillai DR, , 2009. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance. Malar J 8: 284.[Crossref] [Google Scholar]
  57. Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, Medici MC, Arcangeletti MC, Snounou G, Dettori G, Chezzi C, , 2004. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol 42: 12141219.[Crossref] [Google Scholar]
  58. New Engalnd Biolabs, 2011. Taq PCR Kit. [Google Scholar]
  59. QIAGEN, 2011. QuantiTect SYBR Green PCR Kits. [Google Scholar]
  60. QIAGEN, 2011. QuantiTect Multiplex PCR Kits. [Google Scholar]
  61. World Scientific, 2011. Lambda PCR Kit. [Google Scholar]
  62. Bell D, Wongsrichanalai C, Barnwell JW, , 2006. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 4: S7S20.[Crossref] [Google Scholar]
  63. Breman JG, Alilio MS, Mills A, , 2004. Conquering the intolerable burden of malaria: what's new, what's needed: a summary. Am J Trop Med Hyg 71: 115. [Google Scholar]
  64. Vincent M, Xu Y, Kong H, , 2004. Helicase-dependent isothermal DNA amplification. EMBO Rep 5: 795800.[Crossref] [Google Scholar]
  65. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC, , 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19: 225232.[Crossref] [Google Scholar]
  66. Van Ness J, Van Ness LK, Galas DJ, , 2003. Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci USA 100: 45044509.[Crossref] [Google Scholar]
  67. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T, , 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: E63.[Crossref] [Google Scholar]
  68. Mori Y, Nagamine K, Tomita N, Notomi T, , 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289: 150154.[Crossref] [Google Scholar]
  69. Tomita N, Mori Y, Kanda H, Notomi T, , 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3: 877882.[Crossref] [Google Scholar]
  70. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JS, , 2006. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52: 303306.[Crossref] [Google Scholar]
  71. Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, Jin L, Takeo S, Tsuboi T, , 2007. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45: 25212528.[Crossref] [Google Scholar]
  72. Paris DH, Imwong M, Faiz AM, Hasan M, Yunus EB, Silamut K, Lee SJ, Day NP, Dondorp AM, , 2007. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria. Am J Trop Med Hyg 77: 972976. [Google Scholar]
  73. LaBarre P, Gerlach J, Wilmoth J, Beddoe A, Singleton J, Weigl B, , 2010. Non-Instrumented Nucleic Acid Amplification (NINA): Instrument-Free Molecular Malaria Diagnostics for Low-Resource Settings. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 10971099. [Google Scholar]
  74. Polley SD, Mori Y, Watson J, Perkins MD, Gonzalez IJ, Notomi T, Chiodini PL, Sutherland CJ, , 2010. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48: 28662871.[Crossref] [Google Scholar]
  75. Compton J, , 1991. Nucleic acid sequence-based amplification. Nature 350: 9192.[Crossref] [Google Scholar]
  76. Mens PF, Schoone GJ, Kager PA, Schallig H, , 2006. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification. Malar J 5: 80.[Crossref] [Google Scholar]
  77. Marangi M, Di Tullio R, Mens P, Martinelli D, Fazio V, Angarano G, Schallig H, Giangaspero A, Scotto G, , 2009. Prevalence of Plasmodium spp. in malaria asymptomatic African migrants assessed by nucleic acid sequence based amplification. Malar J 8: 12.[Crossref] [Google Scholar]
  78. Landry ML, Garner R, Ferguson D, , 2003. Comparison of the NucliSens basic kit (nucleic acid sequence-based amplification) and the Argene Biosoft Enterovirus Consensus reverse transcription-PCR assays for rapid detection of enterovirus RNA in clinical specimens. J Clin Microbiol 41: 50065010.[Crossref] [Google Scholar]
  79. Swan H, Sloan L, Muyombwe A, Chavalitshewinkoon-Petmitr P, Krudsood S, Leowattana W, Wilairatana P, Looareesuwan S, Rosenblatt JON, , 2005. Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand. Am J Trop Med Hyg 73: 850854. [Google Scholar]
  80. McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, , 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 42: 24032410.[Crossref] [Google Scholar]
  81. Lee M-A, Tan C-H, Aw L-T, Tang C-S, Singh M, Lee S-H, Chia H-P, Yap EP, , 2002. Real-time fluorescence-based PCR for detection of malaria parasites. J Clin Microbiol 40: 43434345.[Crossref] [Google Scholar]
  82. McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, Zimmerman PA, , 2006. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay. Am J Trop Med Hyg 74: 413421. [Google Scholar]
  83. Mori Y, Hirano T, Notomi T, , 2006. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 6: 3.[Crossref] [Google Scholar]
  84. Laoboonchai A, Kawamoto F, Thanoosingha N, Kojima S, Scott Miller RR, Kain KC, Wongsrichanalai C, , 2001. PCR-based ELISA technique for malaria diagnosis of specimens from Thailand. Trop Med Int Health 6: 458462.[Crossref] [Google Scholar]
  85. Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HD, , 2008. Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis 61: 421427.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0685
Loading
/content/journals/10.4269/ajtmh.2012.11-0685
Loading

Data & Media loading...

  • Received : 02 Nov 2011
  • Accepted : 02 May 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error