Volume 86, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



For over 60 years, pentavalent antimony (Sb) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sb revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sb, and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sb caused the SCC.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Saravia NG, Weigle K, Navas C, Segura I, Valderrama L, Valencia AZ, Escorcia B, McMahon-Pratt D, , 2002. Heterogeneity, geographic distribution, and pathogenicity of serodemes of Leishmania viannia in Colombia. Am J Trop Med Hyg 66: 738744. [Google Scholar]
  2. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S, , 2007. Cutaneous leishmaniasis. Lancet Infect Dis 7: 581596.[Crossref] [Google Scholar]
  3. Ballas SK, , 2002. Sickle cell anaemia: progress in pathogenesis and treatment. Drugs 62: 11431172.[Crossref] [Google Scholar]
  4. Jaramillo M, Sáenz I, Pereira F, , 1997. Tamizaje para anemia de células falciformes en recién nacidos del Hospital Universitario del Valle y del Hospital Mario Correa Renjifo. Actual Pediatr (Granada) 7: 313. [Google Scholar]
  5. Baker NC, Hemminger BM, , 2010. Mining connections between chemicals, proteins, and diseases extracted from Medline annotations. J Biomed Inform 43: 510519.[Crossref] [Google Scholar]
  6. Hebbel RP, Eaton JW, Balasingam M, Steinberg MH, , 1982. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70: 12531259.[Crossref] [Google Scholar]
  7. Morris CR, Suh JH, Hagar W, Larkin S, Bland DA, Steinberg MH, Vichinsky EP, Shigenaga M, Ames B, Kuypers FA, Klings ES, , 2008. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111: 402410.[Crossref] [Google Scholar]
  8. Manfredini V, Lazzaretti LL, Griebeler IH, Santin AP, Brandao VD, Wagner S, Castro SM, Peralba MC, Benfato MS, , 2008. Blood antioxidant parameters in sickle cell anemia patients in steady state. J Natl Med Assoc 100: 897902.[Crossref] [Google Scholar]
  9. Reid M, Badaloo A, Forrester T, Jahoor F, , 2006. In vivo rates of erythrocyte glutathione synthesis in adults with sickle cell disease. Am J Physiol Endocrinol Metab 291: E73E79.[Crossref] [Google Scholar]
  10. Somjee SS, Warrier RP, Thomson JL, Ory-Ascani J, Hempe JM, , 2005. Advanced glycation end-products in sickle cell anaemia. Br J Haematol 128: 112118.[Crossref] [Google Scholar]
  11. Li SD, Su YD, Li M, Zou CG, , 2006. Hemin-mediated hemolysis in erythrocytes: effects of ascorbic acid and glutathione. Acta Biochim Biophys Sin (Shanghai) 38: 6369.[Crossref] [Google Scholar]
  12. Dumaswala UJ, Zhuo L, Mahajan S, Nair PN, Shertzer HG, Dibello P, Jacobsen DW, , 2001. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am J Physiol Cell Physiol 280: C867C873. [Google Scholar]
  13. Niihara Y, Matsui NM, Shen YM, Akiyama DA, Johnson CS, Sunga MA, Magpayo J, Embury SH, Kalra VK, Cho SH, Tanaka KR, , 2005. L-glutamine therapy reduces endothelial adhesion of sickle red blood cells to human umbilical vein endothelial cells. BMC Blood Disord 5: 4. [Google Scholar]
  14. Cunningham ML, Fairlamb AH, , 1995. Trypanothione reductase from Leishmania donovani. Purification, characterization and inhibition by trivalent antimonials. Eur J Biochem 230: 460468.[Crossref] [Google Scholar]
  15. Wyllie S, Cunningham ML, Fairlamb AH, , 2004. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani . J Biol Chem 279: 3992539932.[Crossref] [Google Scholar]
  16. Wyllie S, Fairlamb AH, , 2006. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukemia monocyte cell line. Biochem Pharmacol 71: 257267.[Crossref] [Google Scholar]
  17. Swanson DR, , 1988. Migraine and magnesium: eleven neglected connections. Perspect Biol Med 31: 526557.[Crossref] [Google Scholar]
  18. Frijters R, van Vugt M, Smeets R, van Schaik R, de Vlieg J, Alkema W, , 2010. Literature mining for the discovery of hidden connections between drugs, genes and diseases. PLoS Comput Biol 6: pii: e1000943.[Crossref] [Google Scholar]
  19. Weeber M, Vos R, Klein H, De Jong-Van Den Berg LT, Aronson AR, Molema G, , 2003. Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide. J Am Med Inform Assoc 10: 252259.[Crossref] [Google Scholar]
  20. Hettne KM, Weeber M, Laine ML, ten Cate H, Boyer S, Kors JA, Loos BG, , 2007. Automatic mining of the literature to generate new hypotheses for the possible link between periodontitis and atherosclerosis: lipopolysaccharide as a case study. J Clin Periodontol 34: 10161024.[Crossref] [Google Scholar]
  21. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P, , 2008. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36: D684D688.[Crossref] [Google Scholar]
  22. Baral C, Gonzalez G, Gitter A, Teegarden C, Zeigler A, Joshi-Topé G, , 2007. CBioC: beyond a prototype for collaborative annotation of molecular interactions from the literature. Comput Syst Bioinformatics Conf 6: 381384.[Crossref] [Google Scholar]
  23. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M, , 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277D280.[Crossref] [Google Scholar]
  24. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS, , 2011. DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res 39: D1035D1041.[Crossref] [Google Scholar]
  25. Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, Wiegers T, Mattingly CJ, , 2011. The Comparative Toxicogenomics Database: update 2011. Nucleic Acids Res 39: D1067D1072.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 01 Nov 2011
  • Accepted : 08 Mar 2012
  • Published online : 01 Jun 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error