1921
Volume 86, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Prevention and control of Lyme disease is difficult because of the complex biology of the pathogen's () vector () and multiple reservoir hosts with varying degrees of competence. Cost-effective implementation of tick- and host-targeted control methods requires an understanding of the relationship between pathogen prevalence in nymphs, nymph abundance, and incidence of human cases of Lyme disease. We quantified the relationship between estimated acarological risk and human incidence using county-level human case data and nymphal prevalence data from field-derived estimates in 36 eastern states. The estimated density of infected nymphs (mDIN) was significantly correlated with human incidence ( = 0.69). The relationship was strongest in high-prevalence areas, but it varied by region and state, partly because of the distribution of genotypes. More information is needed in several high-prevalence states before DIN can be used for cost-effectiveness analyses.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2012.11-0630
2012-06-01
2017-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/86/6/1062.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0630&mimeType=html&fmt=ahah

References

  1. CDC, 2011. Reported Cases of Lyme Disease by Year, United States, 1996–2010. Available at: http://www.cdc.gov/lyme/stats/chartstables/casesbyyear.html. Accessed January 2011.
  2. CDC, 2011. Lyme Disease Incidence Rates by State, 2005–2010. Available at: http://www.cdc.gov/lyme/stats/chartstables/incidencebystate.html. Accessed January 2011.
  3. Connally NP, Durante AJ, Yousey-Hindes KM, Meek JI, Nelson RS, Heimer R, , 2009. Peridomestic lyme disease prevention results of a population-based case-control study. Am J Prev Med 37: 201206.[Crossref]
  4. Gould LH, Nelson RS, Griffith KS, Hayes EB, Piesman J, Mead PS, Cartter ML, , 2008. Knowledge, attitudes, and behaviors regarding lyme disease prevention among Connecticut residents, 1999–2004. Vector Borne Zoonotic Dis 8: 769776.[Crossref]
  5. Hayes EB, Piesman J, , 2003. Current concepts—how can we prevent Lyme disease? N Engl J Med 348: 24242430.[Crossref]
  6. Piesman J, Eisen L, , 2008. Prevention of tick-borne diseases. Annu Rev Entomol 53: 323343.[Crossref]
  7. Shen AK, Mead PS, Beard CB, , 2011. The lyme disease vaccine—a public health perspective. Clin Infect Dis 52: S247S252.[Crossref]
  8. Fish D, Ginsberg H, , 1993. Population ecology of Ixodes dammini . , ed. Ecology and Environmental Management of Lyme Disease. New Brunswick, NJ: Rutgers University Press, 2542.
  9. Mather TN, Nicholson MC, Donnelly EF, Matyas BT, , 1996. Entomologic index for human risk of Lyme disease. Am J Epidemiol 144: 10661069.[Crossref]
  10. Stafford KC, Cartter ML, Magnarelli LA, Ertel SH, Mshar PA, , 1998. Temporal correlations between tick abundance and prevalence of ticks infected with Borrelia burgdorferi and increasing incidence of Lyme disease. J Clin Microbiol 36: 12401244.
  11. Connally NP, Ginsberg HS, Mather TN, , 2006. Assessing peridomestic entomological factors as predictors for Lyme disease. J Vector Ecol 31: 364370.[Crossref]
  12. Kitron U, Kazmierczak JJ, , 1997. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145: 558566.[Crossref]
  13. Falco RC, McKenna DF, Daniels TJ, Nadelman RB, Nowakowski J, Fish D, Wormser GP, , 1999. Temporal relation between Ixodes scapularis abundance and risk for Lyme disease associated with erythema migrans. Am J Epidemiol 149: 771776.[Crossref]
  14. Johnson JL, Ginsberg HS, Zhioua E, Whitworth UG, Markowski D, Hyland KE, Hu RJ, , 2004. Passive tick surveillance, dog seropositivity, and incidence of human Lyme disease. Vector Borne Zoonotic Dis 4: 137142.[Crossref]
  15. Rand PW, Lacombe EH, Dearborn R, Cahill B, Elias S, Lubelczyk CB, Beckett GA, Smith RP, , 2007. Passive surveillance in Maine, an area emergent for tick-borne diseases. J Med Entomol 44: 11181129.[Crossref]
  16. Allan BF, Keesing F, Ostfeld RS, , 2003. Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17: 267272.[Crossref]
  17. Brownstein JS, Skelly DK, Holford TR, Fish D, , 2005. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146: 469475.[Crossref]
  18. Estrada-Pena A, , 2009. Diluting the dilution effect: a spatial Lyme model provides evidence for the importance of habitat fragmentation with regard to the risk of infection. Geospat Health 3: 143155.[Crossref]
  19. Ashley ST, Meentemeyer V, , 2004. Climatic analysis of Lyme disease in the United States. Clim Res 27: 177187.[Crossref]
  20. Brownstein JS, Holford TR, Fish D, , 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 11521157.[Crossref]
  21. Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O'Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF, , 2006. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36: 6370.[Crossref]
  22. Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F, , 2006. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4: 10581068.[Crossref]
  23. Gatewood AG, Liebman KA, Vourc'h G, Bunikis J, Hamer SA, Cortinas R, Melton F, Cislo P, Kitron U, Tsao J, Barbour AG, Fish D, Diuk-Wasser MA, , 2009. Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol 75: 24762483.[Crossref]
  24. Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, Schwartz I, , 2008. Short report: the propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg 78: 806810.
  25. Hanincova K, Ogden NH, Diuk-Wasser M, Pappas CJ, Iyer R, Fish D, Schwartz I, Kurtenbach K, , 2008. Fitness variation of Borrelia burgdorferi sensu stricto strains in mice. Appl Environ Microbiol 74: 153157.[Crossref]
  26. Wormser GP, Brisson D, Liveris D, Hanincova K, Sandigursky S, Nowakowski J, Nadelman RB, Ludin S, Schwartz I, , 2008. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 198: 13581364.
  27. Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, Hickling G, Brownstein JS, Walker E, Piesman J, Fish D, , 2006. Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Iodidae) in the United States. J Med Entomol 43: 166176.[Crossref]
  28. Diuk-Wasser MA, Vourc'h G, Cislo P, Hoen AG, Melton F, Hamer SA, Rowland M, Cortinas R, Hickling GJ, Tsao JI, Barbour AG, Kitron U, Piesman J, Fish D, , 2010. Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Glob Ecol Biogeogr 19: 504514.
  29. Diuk-Wasser M, Gatewood A, Cislo P, Brinkerhoff R, Hamer S, Rowland M, Cortinas R, Melton F, Hickling G, Tsao J, Bunikis J, Barbour A, Kitron U, Piesman J, Fish D, , 2012. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg, 86: 320327.[Crossref]
  30. Bacon RM, Kugeler KJ, Mead PS, , 2008. Surveillance for Lyme disease—United States, 1992–2006. MMWR Surveill Summ 57: 19.
  31. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U, , 2002. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 8: 289297.[Crossref]
  32. Wormser GP, Liveris D, Nowakowski J, Nadelman RB, Cavaliere LF, McKenna D, Holmgren D, Schwartz I, , 1999. Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis 180: 720725.[Crossref]
  33. Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, Schwartz I, , 2001. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun 69: 43034312.[Crossref]
  34. Estrada-Pena A, , 2009. Tick-borne pathogens, transmission rates and climate change. Front Biosci 14: U2674U2780.
  35. Tsao JI, Wootton JT, Bunikis J, Luna MG, Fish D, Barbour AG, , 2004. An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci USA 101: 1815918164.[Crossref]
  36. Hothorn T, Hornik K, Zeileis A, , 2006. Unbiased recursive partitioning: a conditioxnal inference framework. J Comput Graph Statist 15: 651674.[Crossref]
  37. Jones KL, Glickstein LJ, Damle N, Sikand VK, McHugh G, Steere AC, , 2006. Borrelia burgdorferi genetic markers and disseminated disease in patients with early Lyme disease. J Clin Microbiol 44: 44074413.
  38. Derdakova M, Dudioak V, Brei B, Brownstein JS, Schwartz I, Fish D, , 2004. Interaction and transmission of two Borrelia burgdorferi sensu stricto strains in a tick-rodent maintenance system. Appl Environ Microbiol 70: 67836788.[Crossref]
  39. Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG, , 2004. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150: 17411755.[Crossref]
  40. Eisen L, Eisen RJ, , 2007. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases. Emerg Infect Dis 13: 18161820.[Crossref]
  41. Goddard J, Piesman J, , 2006. New records of immature Ixodes scapularis from Mississippi. J Vector Ecol 31: 421422.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0630
Loading
/content/journals/10.4269/ajtmh.2012.11-0630
Loading

Data & Media loading...

Supplementary Data

Supplementary PDF

  • Received : 10 Oct 2011
  • Accepted : 26 Feb 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error