Volume 86, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Most dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male dispersal. To fill this knowledge gap, we conducted five male MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male .


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, , 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496. [Google Scholar]
  2. Mackenzie JS, Gubler DJ, Petersen LR, , 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: 98109.[Crossref] [Google Scholar]
  3. Gubler DJ, , 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100103.[Crossref] [Google Scholar]
  4. Halstead SB, , 2008. Dengue virus-mosquito interactions. Annu Rev Entomol 53: 273291.[Crossref] [Google Scholar]
  5. Lambrechts L, Scott TW, Gubler DJ, , 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 25: e646.[Crossref] [Google Scholar]
  6. Lee BY, Connor DL, Kitchen SB, Bacon KM, Shah M, Brown ST, Bailey RR, Laosiritaworn Y, Burke DS, Cummings DA, , 2011. Economic value of dengue vaccine in Thailand. Am J Trop Med Hyg 84: 764772.[Crossref] [Google Scholar]
  7. Morrison AC, Scott TW, Rosenberg R, , 2008. Defining challenges and proposing solutions for control of the virus vector Aedes albopictus . PLoS Med 18: e68.[Crossref] [Google Scholar]
  8. Franz AWE, Sanchez-Vargas I, Adelman ZN, Blair CD, Barry J, Beaty BJ, James AA, Olson KE, , 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti . Proc Natl Acad Sci USA 103: 41984203.[Crossref] [Google Scholar]
  9. Alphey L, Nimmo D, O'Connell S, Alphey N, , 2008. Insect population suppression using engineered insects. Adv Exp Med Biol 627: 93103.[Crossref] [Google Scholar]
  10. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL, , 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10: 295311.[Crossref] [Google Scholar]
  11. Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC, IV, 2011. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108: 47724775.[Crossref] [Google Scholar]
  12. Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GG, Scott TW, , 2001. Analysis of survival of young and old Aedes aegypti from Puerto Rico and Thailand. J Med Entomol 38: 537547.[Crossref] [Google Scholar]
  13. Harrington LC, Evermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, , 2008. Age-dependent survival of the dengue vector Aedes aegypti demonstrated by simultaneous release–recapture of different age cohorts. J Med Entomol 45: 307313.[Crossref] [Google Scholar]
  14. Rocha David M, Lourenço-de-Oliveira R, Maciel de Freitas R, , 2009. Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighborhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Mem Inst Oswaldo Cruz 104: 927932.[Crossref] [Google Scholar]
  15. Liew C, Curtis CF, , 2004. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vet Entomol 18: 351360.[Crossref] [Google Scholar]
  16. Maciel-de-Freitas R, Lourenço-de-Oliveira R, , 2009. Presumed unconstrained dispersal of Aedes aegypti in the city of Rio de Janeiro, Brazil. Rev Saude Publica 43: 812.[Crossref] [Google Scholar]
  17. Scott TW, Takken W, Knols BG, Boete C, , 2002. The ecology of genetically modified mosquitoes. Science 298: 117119.[Crossref] [Google Scholar]
  18. Ponlawat A, Harrington LC, , 2007. Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 44: 422426.[Crossref] [Google Scholar]
  19. Ponlawat A, Harrington LC, , 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti . Am J Trop Med Hyg 80: 395400. [Google Scholar]
  20. Thomas DD, Donnelly CA, Wood RJ, Alphey LS, , 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287: 24742476.[Crossref] [Google Scholar]
  21. Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Phuc HK, Marinotti O, Jasinskiene N, James AA, Alphey L, , 2010. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107: 45504554.[Crossref] [Google Scholar]
  22. Barbosa P, Peters TM, , 1969. A comparative study of egg hatching techniques for Aedes aegypti (L.). Mosq News 29: 548551. [Google Scholar]
  23. Cantrell W, , 1939. Relation of size to sex in pupae of Aedes aegypti, Ae. triseriatus and Ae. vexans . J Parasitol 25: 448449.[Crossref] [Google Scholar]
  24. Trpis M, Hauserman W, , 1986. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 35: 12631279. [Google Scholar]
  25. Facchinelli L, Valerio L, Bond JG, Wise de Valdez MR, Harrington LC, Ramsey JM, Casas-Martinez M, Scott TW, , 2011. Development of a semi-field system for contained field trials with Aedes aegypti in southern Mexico. Am J Trop Med Hyg 85: 248256.[Crossref] [Google Scholar]
  26. Landry SV, DeFoliart GR, Hogg DB, , 1988. Adult body size and survivorship in a field population of Aedes triseriatus . J Am Mosq Control Assoc 4: 121128. [Google Scholar]
  27. Armitage P, , 1980. Statistical Methods in Medical Research. Oxford, United Kingdom: Blackwell Scientific Publications, 147166. [Google Scholar]
  28. Gillies MT, , 1961. Studies on the dispersion and survival of Anopheles gambiae in east Africa, by means of marking and release experiments. Bull Entomol Res 52: 99127.[Crossref] [Google Scholar]
  29. Muir LE, Kay BH, , 1998. Aedes aegypti survival ad dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58: 277282. [Google Scholar]
  30. Niebylski ML, Craig GB, Jr, 1994. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J Am Mosq Control Assoc 10: 339343. [Google Scholar]
  31. Clements AN, Paterson GD, , 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18: 373399.[Crossref] [Google Scholar]
  32. Maciel-de-Freitas M, Codeco CT, Lourenco De Oliveira R, , 2007. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol 21: 284292.[Crossref] [Google Scholar]
  33. Mullen GR, Mullen G, Durden LA, , 2009. Medical and Veterinary Entomology. San Diego, CA: Academic Press. [Google Scholar]
  34. Tsuda Y, Takagi M, Wang S, Wang Z, Tang L, , 2001. Movement of Aedes aegypti (Diptera: Culicidae) released in a small isolated village on Hainan Island, China. J Med Entomol 38: 9398.[Crossref] [Google Scholar]
  35. Harrington LC, Scott TW, Lerdthusnee K, , 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209220. [Google Scholar]
  36. Silver JB, , 2008. Mosquito Ecology: Field Sampling Method. Third ed. New York: Springer.[Crossref] [Google Scholar]
  37. Getis A, Morrison AC, Gray K, Scott TW, , 2003. Characteristics of the spatial patterns of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69: 494505. [Google Scholar]
  38. Mongkalangoon P, Grieco JP, Achee NL, Suwonkerd W, Chareonviriyaphap T, , 2009. Irritability and repellency of synthetic pyrethroids on an Aedes aegypti population from Thailand. J Vector Ecol 34: 217224.[Crossref] [Google Scholar]
  39. McDonald PT, , 1977. Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya coast. II. Dispersal within and between villages. J Med Entomol 14: 4953.[Crossref] [Google Scholar]
  40. Sheppard PM, MacDonald WW, Tonn RJ, Grabs B, , 1969. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38: 661702.[Crossref] [Google Scholar]
  41. Magori K, Legros M, Puente ME, Focks DA, Scott TW, Lloyd AL, Gould F, , 2009. Skeeter buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Negl Trop Dis 3: e508.[Crossref] [Google Scholar]

Data & Media loading...


  • Received : 08 Aug 2011
  • Accepted : 26 Nov 2011
  • Published online : 01 Apr 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error