1921
Volume 87, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating exposure. Our objective was to evaluate specific antibody responses to saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to bites.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2012.11-0477
2012-09-05
2017-06-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/87/3/504.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0477&mimeType=html&fmt=ahah

References

  1. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D, , 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11: 11771185.[Crossref]
  2. Renault P, Solet JL, Sissoko D, Balleydier E, Larrieu S, Filleul L, Lassalle C, Thiria J, Rachou E, de Valk H, Ilef D, Ledrans M, Quatresous I, Quenel P, Pierre V, , 2007. A major epidemic of chikungunya virus infection on Reunion Island, France, 2005–2006. Am J Trop Med Hyg 77: 727731.
  3. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A, , 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846.[Crossref]
  4. Roca Y, Baronti C, Revollo RJ, Cook S, Loayza R, Ninove L, Fernandez RT, Flores JV, Herve JP, de Lamballerie X, , 2009. Molecular epidemiological analysis of dengue fever in Bolivia from 1998 to 2008. Vector Borne Zoonotic Dis 9: 337344.[Crossref]
  5. Ligon BL, , 2006. Infectious diseases that pose specific challenges after natural disasters: a review. Semin Pediatr Infect Dis 17: 3645.[Crossref]
  6. Mackenzie JS, Gubler DJ, Petersen LR, , 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98S109.[Crossref]
  7. Barbazan P, Tuntaprasart W, Souris M, Demoraes F, Nitatpattana N, Boonyuan W, Gonzalez JP, , 2008. Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand. Ann Trop Med Parasitol 102: 161171.[Crossref]
  8. Focks DA, Chadee DD, , 1997. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56: 159167.
  9. Tun-Lin W, Kay BH, Barnes A, Forsyth S, , 1996. Critical examination of Aedes aegypti indices: correlations with abundance. Am J Trop Med Hyg 54: 543547.
  10. Billingsley PF, Baird J, Mitchell JA, Drakeley C, , 2006. Immune interactions between mosquitoes and their hosts. Parasite Immunol 28: 143153.[Crossref]
  11. Remoue FC, Ngom S, Boulager A, Simondon F, Garraud O, Fort PO, , 2005. Immune responses to arthropod bites during vector-borne diseases. , eds. Update in Tropical Immunology. Tivandrum, Herala, India: Transworld Research Network, 377400.
  12. Ribeiro JM, , 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143152.
  13. Ribeiro JM, Francischetti IM, , 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 7388.[Crossref]
  14. Nascimento R, Santana J, Lozzi S, Araujo C, Teixeira A, , 2001. Human IgG1 and IgG4: the main antibodies against Triatoma infestans (Hemiptera: Reduviidae) salivary gland proteins. Am J Trop Med Hyg 65: 219226.
  15. Schwartz BS, Ribeiro JM, Goldstein MD, , 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 5866.[Crossref]
  16. Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, Grebaut P, Garcia A, Simondon F, , 2008. Human IgG antibody response to Glossina saliva: an epidemiologic marker of exposure to Glossina bites. Am J Trop Med Hyg 78: 750753.
  17. Das MK, Mishra A, Beuria MK, Dash AP, , 1991. Human natural antibodies to Culex quinquefasciatus: age-dependent occurrence. J Am Mosq Control Assoc 7: 319321.
  18. Trevejo RT, Reeves WC, , 2005. Antibody response to Culex tarsalis salivary gland antigens among sentinel chickens in California. Am J Trop Med Hyg 72: 481487.
  19. Remoue F, Cisse B, Ba F, Sokhna C, Herve JP, Boulanger D, Simondon F, , 2006. Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg 100: 363370.[Crossref]
  20. Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R, , 2006. Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Trop 98: 6673.[Crossref]
  21. Andrade BB, Rocha BC, Reis-Filho A, Camargo LM, Tadei WP, Moreira LA, Barral A, Barral-Netto M, , 2009. Anti-Anopheles darlingi saliva antibodies as marker of Plasmodium vivax infection and clinical immunity in the Brazilian Amazon. Malar J 8: 121.[Crossref]
  22. Peng Z, Simons FE, , 2004. Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol 133: 198209.[Crossref]
  23. Brummer-Korvenkontio H, Palosuo K, Palosuo T, Brummer-Korvenkontio M, Leinikki P, Reunala T, , 1997. Detection of mosquito saliva-specific IgE antibodies by capture ELISA. Allergy 52: 342345.[Crossref]
  24. Peng Z, Rasic N, Liu Y, Simons FE, , 2002. Mosquito saliva-specific IgE and IgG antibodies in 1,059 blood donors. J Allergy Clin Immunol 110: 816817.[Crossref]
  25. Reunala T, Brummer-Korvenkontio H, Palosuo K, Miyanij M, Ruiz-Maldonado R, Love A, Francois G, Palosuo T, , 1994. Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int Arch Allergy Immunol 104: 366371.[Crossref]
  26. Orlandi-Pradines E, Almeras L, Denis de Senneville L, Barbe S, Remoue F, Villard C, Cornelie S, Penhoat K, Pascual A, Bourgouin C, Fontenille D, Bonnet J, Corre-Catelin N, Reiter P, Pages F, Laffite D, Boulanger D, Simondon F, Pradines B, Fusai T, Rogier C, , 2007. Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect 9: 14541462.[Crossref]
  27. Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, Mouchet F, Boulanger D, Simondon F, , 2007. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 104: 108115.[Crossref]
  28. Barrera R, , 2009. Simplified pupal surveys of Aedes aegypti (L.) for entomologic surveillance and dengue control. Am J Trop Med Hyg 81: 100107.
  29. De Benedictis J, Chow-Shaffer E, Costero A, Clark GG, Edman JD, Scott TW, , 2003. Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico, using polymerase chain reaction-based DNA profiling. Am J Trop Med Hyg 68: 437446.
  30. Michael E, Ramaiah KD, Hoti SL, Barker G, Paul MR, Yuvaraj J, Das PK, Grenfell BT, Bundy DA, , 2001. Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J Trop Med Hyg 65: 722728.
  31. McKiel JA, West AS, , 1961. Nature and causation of insect bites reactions. Pediatr Clin North Am 8: 795815.[Crossref]
  32. Brummer-Korvenkontio HL, Reunala P, Palosuo T, , 1994. Detection of mosquito saliva-specific IgE and IgG4 antibodies by immunoblotting. Allergy and Clinical Immunology 93: 551555.[Crossref]
  33. Clements M, Gidwani K, Kumar R, Hostomska J, Dinesh D, Kumar V, Das P, Muller I, Hamilton G, Volfova V, Boelaert M, Das M, Rijal S, Picado A, Volf P, Sundar S, Davies C, Rogers M, , 2010. Measurement of recent exposure to Phlebotomus argentipes, the vector of Indian visceral leishmaniasis, by using human antibody responses to sand fly saliva. Am J Trop Med Hyg 82: 801807.[Crossref]
  34. Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, Sokhna C, Cisse B, Simondon F, Remoue F, , 2009. Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J 8: 198.[Crossref]
  35. Peng Z, Li H, Simons FE, , 1998. Immunoblot analysis of salivary allergens in 10 mosquito species with worldwide distribution and the human IgE responses to these allergens. J Allergy Clin Immunol 101: 498505.[Crossref]
  36. Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT, , 2007. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 7: 33843394.[Crossref]
  37. Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arca B, Simondon F, Remoue F, , 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS ONE 3: e2472.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0477
Loading
/content/journals/10.4269/ajtmh.2012.11-0477
Loading

Data & Media loading...

  • Received : 22 Jul 2011
  • Accepted : 15 Apr 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error