1921
Volume 86, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

is a superior horizontal and vertical vector of West Nile virus (WNV) compared with . transmitted WNV genotype NY99 (CT 2741-99 strain) horizontally to suckling mice at significantly lower rates than on Days 8, 9, 10, and 12 post-infection, and transmitted WNV genotype NY99 to offspring at a lower vertical transmission infection rate than transmitted WNV genotypes NY99 and WN02 (CT S0084-08 strain) with equal efficiency. Daily percent horizontal transmission of genotype NY99 by -infected and by intra-thoracic infection was not significantly different from daily transmission of genotype WN02 from Days 5–23 and Days 2–9 post-infection, respectively. Our findings do not support the previously published hypothesis that genotype NY99 was replaced in the New World by WN02 because of a shorter extrinsic incubation of WN02.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.11-0473
2012-01-01
2018-12-12
Loading full text...

Full text loading...

/deliver/fulltext/14761645/86/1/134.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0473&mimeType=html&fmt=ahah

References

  1. Andreadis TG, Anderson JF, Vossbrinck CR, , 2001. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura . Emerg Infect Dis 7: 670674.[Crossref] [Google Scholar]
  2. Nasci RS, Savage HM, White DJ, Miller JR, Cropp BC, Godsey MS, Kerst AJ, Bennett P, Gottfried K, Lanciotti RS, , 2001. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg Infect Dis 7: 742744.[Crossref] [Google Scholar]
  3. Anderson JF, Main AJ, , 2006. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J Infect Dis 194: 15771579.[Crossref] [Google Scholar]
  4. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, , 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360378.[Crossref] [Google Scholar]
  5. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS, , 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39: 777785.[Crossref] [Google Scholar]
  6. DiMenna MA, Bueno R, Jr Parmenter RR, Norris DE, Sheyka JM, Molina JL, LaBeau EM, Hatton ES, Glass GE, , 2006. Emergence of West Nile virus in mosquito (Diptera: Culicidae) communities of the New Mexico Rio Gande Valley. J Med Entomol 43: 594599.[Crossref] [Google Scholar]
  7. DiMenna MA, Bueno R, Jr Parmenter RR, Norris DE, Sheyka JM, Molina JL, LaBeau EM, Hatton ES, Roberts CM, Glass GE, , 2007. Urban habitat evaluation for West Nile virus surveillance in mosquitoes in Albuquerque, New Mexico. J Am Mosq Control Assoc 23: 153160.[Crossref] [Google Scholar]
  8. Darsie RF, Jr Ward RA, , 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida. [Google Scholar]
  9. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR, , 2004. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis 4: 7182.[Crossref] [Google Scholar]
  10. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR, , 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12: 468474.[Crossref] [Google Scholar]
  11. Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, , 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 10181022.[Crossref] [Google Scholar]
  12. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref] [Google Scholar]
  13. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol 40: 743746.[Crossref] [Google Scholar]
  14. Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, O'Connor P, Carney R, Cahoon-Young B, Shafii M, Brault AC, , 2006. Overwintering of West Nile virus in southern California. J Med Entomol 43: 344355.[Crossref] [Google Scholar]
  15. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD, , 2004. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71: 493500. [Google Scholar]
  16. Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD, , 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77: 365370. [Google Scholar]
  17. Wallis RC, Whitman L, , 1968. Colonization of Culex salinarius in the laboratory. Mosq News 28: 366368. [Google Scholar]
  18. Anderson JF, Andreadis TG, Vossbrinck CR, Tirrell S, Wakem EM, French RA, Garmendia AE, Van Kruiningen HJ, , 1999. Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut. Science 286: 23312333.[Crossref] [Google Scholar]
  19. Beasley DW, Davis CT, Guzman H, Vanlandingham DL, Travassos da Rosa AP, Parsons RE, Higgs S, Tesh RB, Barrett AD, , 2003. Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology 309: 190195.[Crossref] [Google Scholar]
  20. Anderson JF, Main AJ, Delroux K, Fikrig E, , 2008. Extrinsic incubation periods for horizontal and vertical transmission of West Nile virus by Culex pipiens pipiens (Diptera: Culicidae). J Med Entomol 45: 445451.[Crossref] [Google Scholar]
  21. Armstrong PM, Vossbrinck CR, Andreadis TG, Anderson JF, Pesko KN, Newman RM, Lennon NJ, Birren BW, Ebel GD, Henn MR, , 2011. Molecular evolution of West Nile virus in a temperate region: Connecticut, USA 1999–2008. Virology 417: 203210.[Crossref] [Google Scholar]
  22. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, , 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 40664071. [Google Scholar]
  23. Beaty BJ, Calisher CH, Shope RE, Schmidt NJ, Emmons RW, , 1989. Arboviruses. , eds. Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections. Sixth edition. Washington, DC: American Public Health Association, 797855. [Google Scholar]
  24. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref] [Google Scholar]
  25. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA, , 2007. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3: 12621270.[Crossref] [Google Scholar]
  26. Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, Anderson JF, Fikrig E, , 2010. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142: 714725.[Crossref] [Google Scholar]
  27. Pizzi M, , 1950. Sampling variation of the fifty percent end-point, determined by the Reed-Muench (Behrens) method. Hum Biol 22: 151190. [Google Scholar]
  28. Turell MJ, Monath TP, , 1988. Horizontal and vertical transmission of viruses by insect and tick vectors. , ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 127152. [Google Scholar]
  29. Biggerstaff BJ, , 2006. PooledInfRate, Version 3.0: a Microsoft Excel add-in to compute prevalence estimates from pooled samples. Fort Collins, CO: Centers for Disease Control and Prevention. [Google Scholar]
  30. Anderson JF, Andreadis TG, Main AJ, Kline DL, , 2004. Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes. Am J Trop Med Hyg 71: 112119. [Google Scholar]
  31. Dohm DJ, O'Guinn ML, Turell MJ, , 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39: 221225.[Crossref] [Google Scholar]
  32. Reisen WK, Fang Y, Martinez VM, , 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43: 309317.[Crossref] [Google Scholar]
  33. Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, , 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42: 5762.[Crossref] [Google Scholar]
  34. Dohm DJ, Sardelis MR, Turell MJ, , 2002. Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J Med Entomol 39: 640644.[Crossref] [Google Scholar]
  35. Baqar S, Hayes CG, Murphy JR, Watts DM, , 1993. Vertical transmission of West Nile virus by Culex and Aedes species of mosquitoes. Am J Trop Med Hyg 48: 757762. [Google Scholar]
  36. Miller BR, Nasci RS, Godsey MS, Savage HM, Lutwama JJ, Lanciotti RS, Peters CJ, , 2000. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley Province, Kenya. Am J Trop Med Hyg 62: 240246. [Google Scholar]
  37. Phillips RA, Christensen K, , 2006. Field-caught Culex erythrothorax larvae found naturally infected with West Nile virus in Grand County, Utah. J Am Mosq Control Assoc 22: 561562.[Crossref] [Google Scholar]
  38. Tesh RB, , 1980. Experimental studies on the transovarial transmission of Kunjin and San Angelo viruses in mosquitoes. Am J Trop Med Hyg 29: 657666. [Google Scholar]
  39. Davis CT, Beasley DW, Guzman H, Raj P, D'Anton M, Novak RJ, Unnasch TR, Tesh RB, Barrett ADT, , 2003. Genetic variation among temporally and geographically distinct West Nile virus isolates, United States, 2001, 2002. Emerg Infect Dis 9: 14231429.[Crossref] [Google Scholar]
  40. Davis CT, Ebel GD, Lanciotti RS, Brault AC, Guzman H, Siirin M, Lambert A, Parsons RE, Beasley DW, Novak RJ, Elizondo-Quiroga D, Green EN, Young DS, Stark LM, Drebot MA, Artsob H, Tesh RB, Kramer LD, Barrett AD, , 2005. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342: 252265.[Crossref] [Google Scholar]
  41. Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, , 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4: e1000092.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0473
Loading
/content/journals/10.4269/ajtmh.2012.11-0473
Loading

Data & Media loading...

  • Received : 21 Jul 2011
  • Accepted : 29 Sep 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error