Volume 87, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Four terpenoid derivatives were examined for their activity against Our results show that two compounds were very active against both extra- and intracellular forms. These compounds, non-toxic for the host cells, are more effective than the reference drug benznidazole. The capacity to infect cells was negatively affected and the number of amastigotes and trypomastigotes was reduced. A wide range of ultrastructural alterations was found in the epimastigote forms treated with these compounds. Some metabolic changes occurred presumably at the level of succinate and acetate production, perhaps caused by the disturbance of the enzymes involved in sugar metabolism inside the mitochondria. results were consistent with those observed . The parasitic load was significantly lower than in the control assay with benznidazole. The effects of these products showed the reduction of the anti- antibodies level during the chronic stage.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Souza W, , 2007. Chagas' disease: facts and reality. Microbes Infect 9: 544545.[Crossref] [Google Scholar]
  2. Dias JC, , 2009. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 104: 4145.[Crossref] [Google Scholar]
  3. Kribs-Zaleta CM, , 2010. Alternative transmission modes for Trypanosoma cruzi . Math Biosci Eng 7: 657673.[Crossref] [Google Scholar]
  4. Brener Z, Gazzinelli RT, , 1997. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease. Int Arch Allergy Appl Immunol 114: 103110.[Crossref] [Google Scholar]
  5. Strosberg AM, Barrio K, Stinger VH, Tashker J, Wilbur JC, Wilson L, Woo K, , 2007. Chagas Disease: A Latin Nemesis. San Francisco, CA: Institute for OneWorld Health. [Google Scholar]
  6. World Health Organization, 2010. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/index.html#. Accessed January 2010.
  7. Croft S, Barrett M, Urbina J, , 2005. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 21: 508512.[Crossref] [Google Scholar]
  8. Hinojosa-Valdez R, Düsman-Tonin LT, Ueda-Nakamura T, Dias-Filho BP, Morgado-Diaz A, Sarragiotto MH, Vataru-Nakamura C, , 2009. Biological activity of 1, 2, 3, 4-tetrahydro-β-carboline-3-carboxamides against Trypanosoma cruzi . Acta Trop 110: 714.[Crossref] [Google Scholar]
  9. Leite JP, Oliveira AB, Lombardi JA, Filho JD, Chair E, , 2006. Trypanocidal activity of triterpenes from Arrabidaea triplinervia and derivatives. Biol Pharm Bull 29: 23072309.[Crossref] [Google Scholar]
  10. do Nascimento AM, Chaves JS, Albuquerque S, de Oliveira DC, , 2004. Trypanocidal properties of Mikania stipulacea and Mikania hoehnei isolated terpenoids. Fitoterapia 75: 381384.[Crossref] [Google Scholar]
  11. Ambrósio SR, Arakawa NS, Esperandim VR, de Albuquerque S, Da Costa FB, , 2008. Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae). Phytother Res 22: 14131415.[Crossref] [Google Scholar]
  12. Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D, , 2010. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs 8: 4758.[Crossref] [Google Scholar]
  13. Herrera JC, Troncone G, Henriquez D, Urdaneta N, , 2008. Trypanocidal activity of abietane diterpenoids from the roots of Craniolaria annua . Z Naturforsch C 63: 821829.[Crossref] [Google Scholar]
  14. Martin D, Tholl D, Gershenzon J, Bohlmann J, , 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129: 10031018.[Crossref] [Google Scholar]
  15. San Feliciano A, Gordaliza M, Salinero MA, Miguel del Corral JM, , 1993. Abietane acids: sources, biological activities, and therapeutic uses. Planta Med 59: 485490.[Crossref] [Google Scholar]
  16. Gao J, Yang L, Jia ZJ, , 1997. A new eremophilane sesquiterpenoid and a new iridoid from Pedicularis striata subsp arachnoides . Planta Med 63: 248250.[Crossref] [Google Scholar]
  17. Marrero JG, Andres LS, Luis JG, , 2002. Semisynthesis of rosmanol and its derivatives. Easy access to abietatriene diterpenes isolated from the genus Salvia with biological activities. J Nat Prod 65: 986989.[Crossref] [Google Scholar]
  18. Tan N, Kaloga M, Radtke OA, Kiderlen AF, Oksuz S, Ulubelen A, Kolodziej H, , 2002. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 6: 881884.[Crossref] [Google Scholar]
  19. Son KH, Oh HM, Choi SK, Han DC, Kwon BM, , 2005. Anti-tumor abietane diterpenes from the cones of Sequoia sempervirens . Bioorg Med Chem Lett 15: 20192021.[Crossref] [Google Scholar]
  20. Alvarez-Manzaneda E, Chahboun R, Cabrera E, Alvarez E, Alvarez-Manzaneda R, Lachkar M, Messouri I, , 2007. First synthesis of picealactone C. A new route toward taxodione-related terpenoids from abietic acid. Tetrahedron Lett 48: 989992.[Crossref] [Google Scholar]
  21. Alvarez-Manzaneda E, Chahboun R, Cabrera E, Alvarez E, Alvarez-Manzaneda R, Lachkar M, Messouri I, , 2007. Synthesis of phenol abietane diterpenes based on the oxidative radical cyclization utilizing the Mn(OAc)3/Ac2O System. Synlett 15: 24252429.[Crossref] [Google Scholar]
  22. Kinouchi Y, Ohtsu H, Tokuda H, Nishino H, Matsunaga S, Tanaka R, , 2000. Potential antitumor-promoting diterpenoids from the stem bark of Piceaglehni . J Nat Prod 63: 817820.[Crossref] [Google Scholar]
  23. Téllez-Meneses J, Mejía-Jaramillo AM, Triana-Chávez O, , 2008. Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop 108: 2634.[Crossref] [Google Scholar]
  24. Luque F, Fernández-Ramos C, Entrala E, Rosales MJ, Navarro JA, Romero MA, Salas-Peregrín JM, Sánchez-Moreno M, , 2000. In vitro evaluation of newly synthesized [1,2,4]triazolo[1,5-a]pyrimidine derivatives against Trypanosoma cruzi, Leishmania donovani and Phytomonas staheli . Comp Biochem Physiol 126: 3944. [Google Scholar]
  25. Osuna A, Adroher FJ, Lupiañez JA, , 1990. Influence of electrolytes and non-electrolytes on growth and differentiation of Trypanosoma cruzi . Cell Differ Dev 30: 8995.[Crossref] [Google Scholar]
  26. Moreno D, Plano D, Baquedano Y, Jiménez-Ruiz A, Palop JA, Sanmartín C, , 2011. Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitol Res 108: 233239.[Crossref] [Google Scholar]
  27. da Silva CF, Batista MM, Batista DG, de Souza EM, da Silva PB, de Oliveira GM, Meuser AS, Shareef AR, Boykin DW, Soeiro MN, , 2008. In vitro and in vivo studies of the trypanocidal activity of a diarylthiophenediamidine against Trypanosoma cruzi . Antimicrob Agents Chemother 9: 33073314.[Crossref] [Google Scholar]
  28. Maldonado C, Marin C, Olmo F, Huertas O, Quiros M, Sánchez-Moreno M, Rosales MJ, Salas JM, , 2010. In vitro and in vivo trypanocidal evaluation of nickel complexes with an azapurine derivative against Trypanosoma cruzi . J Med Chem 53: 69646972.[Crossref] [Google Scholar]
  29. Fernández-Becerra C, Sánchez-Moreno M, Osuna A, Opperdoes FR, , 1997. Comparative aspects of energy metabolism in plant trypanosomatids. J Eukaryot Microbiol 44: 523529.[Crossref] [Google Scholar]
  30. Porcal W, Hernandez P, Aguirre G, Boiani L, Boiani M, Merlino A, Ferreira A, Di Maio R, Castro A, Gonzalez M, Cerecetto H, , 2007. Second generation of 5-ethenylbenzofuroxan derivatives as inhibitors of Trypanosoma cruzi growth: synthesis, biological evaluation, and structure-activity relationships. Bioorg Med Chem 15: 27682781.[Crossref] [Google Scholar]
  31. Nwaka S, Hudson A, , 2006. Innovative lead discovery strategies for tropical diseases. Natl Rev 5: 941955. [Google Scholar]
  32. Sülsen VP, Frank FM, Cazorla SI, Anesini CA, Malchiodi EL, Freixa B, Vila R, Muschietti LV, Martino VS, , 2008. Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrob Agents Chemother 52: 24152419.[Crossref] [Google Scholar]
  33. Turrens J, , 1999. More differences in energy metabolism between Trypanosomatidae . Parasitol Today 15: 346348.[Crossref] [Google Scholar]
  34. Mendoza DT, Ureña González LD, Ortega-arría E, Capson TL, Rios LC, , 2003. Five new cassane diterpenes from Myrospermum frutescens with activity against Trypanosoma cruzi . J Nat Prod 66: 928932.[Crossref] [Google Scholar]
  35. Sánchez-Moreno M, Sanz AM, Gomez-Contreras F, Navarro P, Marín C, Ramírez-Macias I, Rosales MJ, Olmo F, Garcia-Aranda I, Campayo L, Cano C, Arrebola F, Yunta MJ, , 2011. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J Med Chem 54: 970979.[Crossref] [Google Scholar]
  36. Sartorelli P, Carvalho CS, Reimão JQ, Lorenzi H, Tempone AG, , 2010. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera . Planta Med 76: 14541456.[Crossref] [Google Scholar]
  37. Bringaud F, Riviere L, Coustou V, , 2006. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149: 19.[Crossref] [Google Scholar]
  38. Ginger M, , 2005. Trypanosomatid biology and euglenozoan evolution: new insights and shifting paradigms revealed through genome sequencing. Protist 156: 377392.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 20 Jul 2011
  • Accepted : 26 Nov 2011
  • Published online : 05 Sep 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error