1921
Volume 86, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The fungus reduces longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female infected with (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter×7 meter×4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59–95% in large cages compared with 61–69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. can kill and may reduce biting of in semi-field conditions and in the laboratory. These results further support the use of as a potential biocontrol agent against .

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.11-0455
2012-04-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/14761645/86/4/656.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0455&mimeType=html&fmt=ahah

References

  1. Hemingway J, Ranson H, 2000. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45: 371391.[Crossref]
    [Google Scholar]
  2. Ponlawat A, Scott JG, Harrington LC, 2005. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42: 821825.[Crossref]
    [Google Scholar]
  3. Cui F, Raymond M, Qiao C-L, 2006. Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 62: 10131022.[Crossref]
    [Google Scholar]
  4. García GP, Flores AE, Fernández-Salas I, Saaveda-Rodríguez K, Reyes-Solis G, Lozano-Fuentes S, Bond JG, Casas-Martínez M, Ramsey JM, García-Rejón J, Domínguez-Galera M, Ranson H, Hemingway J, Eisen L, Black WC, 2009. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. Public Library of Science Neglected Tropical Diseases 3: e531.[Crossref]
    [Google Scholar]
  5. Scholte E-J, Njiru BN, Smallegange RC, Takken W, Knols BG, 2003. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae . Malar J 2: 29.[Crossref]
    [Google Scholar]
  6. Kikankie CK, Brooke BD, Knols BG, Koekemoer LL, Farenhorst M, Hunt RH, Thomas MB, Coatzee M, 2010. The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malar J 9: 71.[Crossref]
    [Google Scholar]
  7. Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Knols BG, Takken W, Russell TL, 2009. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malar J 8: 309.[Crossref]
    [Google Scholar]
  8. Scholte E-J, Takken W, Knols BG, 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae . Acta Trop 102: 151158.[Crossref]
    [Google Scholar]
  9. de Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI, 2008. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for dengue vector control. Biocontrol Sci Technol 18: 10171025.[Crossref]
    [Google Scholar]
  10. Darbro JM, Graham RI, Kay BH, Ryan PA, Thomas MB, 2011. Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Technol 21: 10271047.[Crossref]
    [Google Scholar]
  11. Scholte E-J, Knols BG, Takken W, 2006. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol 91: 4349.[Crossref]
    [Google Scholar]
  12. Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB, 2005. Fungal pathogen reduces potential for malaria transmission. Science 308: 16381641.[Crossref]
    [Google Scholar]
  13. Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BG, Coatzee M, 2009. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA 106: 1744317447.[Crossref]
    [Google Scholar]
  14. Howard AFV, Koenraadt CJ, Farenhorst M, Knols BG, Takken W, 2010. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana . Malar J 9: 168.[Crossref]
    [Google Scholar]
  15. Scholte E-J, Ng'habi K, Kihonda J, Takken W, Paaijmans K, Abdullah S, Killeen GF, Knols BG, 2005. An entomopathic fungus for the control of adult African malaria mosquitoes. Science 308: 16411642.[Crossref]
    [Google Scholar]
  16. Farenhorst M, Farina D, Scholte E-J, Takken W, Hunt RH, Coetzee M, Knols BG, 2008. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus . Am J Trop Med Hyg 78: 910916.
    [Google Scholar]
  17. Lwetoijera DW, Sumaye RD, Madumla EP, Kavishe DR, Mnyone LL, Russell TL, Okumu FO, 2010. An extra-domiciliary method of delivering entomopathogenic fungus, Metarhizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis . Parasites and Vectors 3.[Crossref]
    [Google Scholar]
  18. Darbro JM, Thomas MB, 2009. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am J Trop Med Hyg 80: 992997.
    [Google Scholar]
  19. Howard AF, N’Guessan R, Koenraadt CJ, Asidi A, Farenhorst M, Akogbeto M, Thomas MB, Knols BG, Takken W, 2010. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide resistant Culex quinquefasciatus in Benin, west Africa. Parasites and Vectors 3.
    [Google Scholar]
  20. Blanford S, Thomas MB, 2001. Adult survival, maturation and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum . J Invertebr Pathol 78: 18.[Crossref]
    [Google Scholar]
  21. Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, DeJong PA, Standfield GW, Sale RW, O'Neill SL, 2011. A secure semi-field system for the study of Aedes aegypti . PLoS Negl Trop Dis 5: e988.[Crossref]
    [Google Scholar]
  22. Clark GG, Seda H, Gubler DJ, 1994. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10: 119124.
    [Google Scholar]
  23. Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265267.[Crossref]
    [Google Scholar]
  24. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74607465.[Crossref]
    [Google Scholar]
  25. Paajimans KP, Read AF, Thomas MB, 2009. Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA 106: 1384413849.[Crossref]
    [Google Scholar]
  26. Blanford S, Thomas MB, 2001. Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum . J Invertebr Pathol 78: 18.[Crossref]
    [Google Scholar]
  27. Blanford S, Read AF, Thomas MB, 2009. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal pathogens. Malar J 8: 72.[Crossref]
    [Google Scholar]
  28. Canyon DV, Hii JL, 1997. The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11: 319332.[Crossref]
    [Google Scholar]
  29. Wilson ML, Agudelo-Silva F, Spielman A, 1990. Increased abundance, size and longevity of food-deprived mosquito populations exposed to a larval fungicide. Am J Trop Med Hyg 43: 551556.
    [Google Scholar]
  30. Mnyone LL, Kirby MJ, Mpingwa MW, Lwetoijera DW, Knols BG, Takken W, Koenraadt CJ, Russell TL, 2011. Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status. Parasitological Research 108: 317322.[Crossref]
    [Google Scholar]
  31. Paula AR, Carolino AT, Paula CO, Samuels RI, 2011. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasites and Vectors 4.
    [Google Scholar]
  32. Garcia-Munguia AM, Garza-Hernandez JA, Rebollar-Tallez EA, Rodriguez-Perez RA, Reyes-Villanueva F, 2011. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasites and Vectors 4.[Crossref]
    [Google Scholar]
  33. Ball TS, Ritchie SA, 2010. Evaluation of BG-Sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment. J Med Entomol 47: 657663.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0455
Loading
/content/journals/10.4269/ajtmh.2012.11-0455
Loading

Data & Media loading...

  • Received : 14 Jul 2011
  • Accepted : 21 Jan 2012
  • Published online : 01 Apr 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error