Volume 88, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The impact of weather variation on dengue transmission in Cairns, Australia, was determined by applying a process-based dengue simulation model (DENSiM) that incorporated local meteorologic, entomologic, and demographic data. Analysis showed that inter-annual weather variation is one of the significant determinants of dengue outbreak receptivity. Cross-correlation analyses showed that DENSiM simulated epidemics of similar relative magnitude and timing to those historically recorded in reported dengue cases in Cairns during 1991–2009, ( = 0.372, < 0.01). The DENSiM model can now be used to study the potential impacts of future climate change on dengue transmission. Understanding the impact of climate variation on the geographic range, seasonality, and magnitude of dengue transmission will enhance development of adaptation strategies to minimize future disease burden in Australia.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Guzman A, Istúriz RE, , 2010. Update on the global spread of dengue. Int J Antimicrob Agents 36: S40S42.[Crossref] [Google Scholar]
  2. Lambrechts L, Scott TW, Gubler DJ, , 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.[Crossref] [Google Scholar]
  3. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.[Crossref] [Google Scholar]
  4. Focks DA, Daniels E, Haile DG, Keesling JE, , 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489506. [Google Scholar]
  5. Patz JA, Martens WJ, Focks DA, Jetten TH, , 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147153.[Crossref] [Google Scholar]
  6. Otero M, Solari HG, , 2010. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math Biosci 223: 3246.[Crossref] [Google Scholar]
  7. Huey RB, Tewksbury JJ, , 2009. Can behavior douse the fire of climate warming? Proc Natl Acad Sci USA 106: 36473648.[Crossref] [Google Scholar]
  8. Thai KT, Cazelles B, Nguyen NV, Vo LT, Boni MF, Farrar J, Simmons CP, van Doorn HR, de Vries PJ, , 2010. Dengue dynamics in Binh Thuan Province, southern Vietnam: periodicity, synchronicity and climate variability. PLoS Negl Trop Dis 4: e747.[Crossref] [Google Scholar]
  9. Hales S, Weinstein P, Woodward A, , 1996. Dengue fever epidemics in the South Pacific: driven by El Nino Southern Oscillation? Lancet 348: 16641665.[Crossref] [Google Scholar]
  10. Hu W, Clements A, Williams G, Tong S, , 2010. Dengue fever and El Niño/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 67: 307311.[Crossref] [Google Scholar]
  11. Colon-Gonzalez FJ, Lake IR, Bentham G, , 2011. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg 84: 757763.[Crossref] [Google Scholar]
  12. Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, Su H-J, , 2009. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 22242233.[Crossref] [Google Scholar]
  13. Johansson MA, Dominici F, Glass GE, , 2009. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3: e382.[Crossref] [Google Scholar]
  14. Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q, , 2009. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 9: 395.[Crossref] [Google Scholar]
  15. Hii YL, Rocklov J, Ng N, Tang CS, Pang FY, Sauerborn R, , 2009. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action 2009 Nov 11: 2. [Google Scholar]
  16. Jetten TH, Focks DA, , 1997. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 57: 285297. [Google Scholar]
  17. Hales S, de Wet N, Maindonald J, Woodward A, , 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830834.[Crossref] [Google Scholar]
  18. Hopp MJ, Foley JA, , 2001. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti . Clim Change 48: 441463.[Crossref] [Google Scholar]
  19. Hanna JN, Ritchie SA, Richards AR, Taylor CT, Pyke AT, Montgomery BL, Piispanen JP, Morgan AK, Humphreys JL, , 2006. Multiple outbreaks of dengue serotype 2 in north Queensland, 2003/04. Aust N Z J Public Health 30: 220225.[Crossref] [Google Scholar]
  20. Hanna JN, Ritchie SA, Merritt AD, van den Hurk AF, Phillips DA, Serafin IL, Norton RE, McBride WJ, Gleeson FV, Poidinger M, , 1998. Two contiguous outbreaks of dengue type 2 in north Queensland. Med J Aust 168: 221225. [Google Scholar]
  21. Kitchener S, Leggat PA, Brennan L, McCall B, , 2002. Importation of dengue by soldiers returning from East Timor to north Queensland, Australia. J Travel Med 9: 180183.[Crossref] [Google Scholar]
  22. Beebe NW, Cooper RD, Mottram P, Sweeney AW, , 2009. Australia's dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3: e429.[Crossref] [Google Scholar]
  23. Kay BH, Barker-Hudson P, Stallman ND, Wiemers MA, Marks EN, Holt PJ, Musico M, Gorman BM, , 1984. Dengue fever. Reappearance in northern Queensland after 26 years. Med J Aust 140: 264268. [Google Scholar]
  24. Russell RC, Currie BJ, Lindsay MD, Mackenzie JS, Ritchie SA, Whelan PI, , 2009. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. Med J Aust 190: 265268. [Google Scholar]
  25. Hanna JN, Ritchie SA, , 2009. Outbreaks of dengue in north Queensland, 1990–2008. Commun Dis Intell 33: 3233. [Google Scholar]
  26. Ritchie S, , 2009. Dengue: Australia's other pandemic. Microbiol Aust 30: 114117. [Google Scholar]
  27. Woodruff RE, McMichael T, Butler C, Hales S, , 2006. Action on climate change: the health risks of procrastinating. Aust N Z J Public Health 30: 567571.[Crossref] [Google Scholar]
  28. Campbell-Lendrum D, Woodruff RE, Prüss-Üstün A, Corvalán C, , 2007. Climate change: quantifying the health impact at national and local levels. , eds. WHO Environmental Burden of Disease Series. Geneva: World Health Organization. [Google Scholar]
  29. Banu S, Hu W, Hurst C, Tong S, , 2011. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health 16: 598607.[Crossref] [Google Scholar]
  30. Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M, , 2006. Malaria resurgence in the east African highlands: temperature trends revisited. Proc Natl Acad Sci U S A 103: 58295834.[Crossref] [Google Scholar]
  31. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J Med Entomol 30: 10181028.[Crossref] [Google Scholar]
  32. Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, , 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528538.[Crossref] [Google Scholar]
  33. Zhang Y, Bi P, Hiller JE, , 2008. Climate change and the transmission of vector-borne disease: a review. Asia Pac J Pac J Public Health 20: 6476.[Crossref] [Google Scholar]
  34. Keating J, , 2001. An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53: 15871597.[Crossref] [Google Scholar]
  35. Fitzsimmons GJ, Wright P, Johansen CA, Whelan PI, National Arbovirus and Malaria Advisory Committee; , 2010. Arboviral diseases and malaria in Australia, 2008–09: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun Dis Intell 34: 225240. [Google Scholar]
  36. Williams CR, Johnson PH, Long SA, Rapley LP, Ritchie SA, , 2008. Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J Med Entomol 45: 11731179.[Crossref] [Google Scholar]
  37. Queensland Health, 2000. Dengue Fever Management Plan: 2000–2005. Cairns: Queensland Health Tropical Public Health Unit. [Google Scholar]
  38. Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, , 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 8689.[Crossref] [Google Scholar]
  39. Rogers DJ, Randolph SE, , 2006. Climate change and vector-borne diseases. Adv Parasitol 62: 345381.[Crossref] [Google Scholar]
  40. Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA, , 2010. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 4: e920.[Crossref] [Google Scholar]
  41. Seed CR, Kiely P, Hyland CA, Keller AJ, , 2009. The risk of dengue transmission by blood during a 2004 outbreak in Cairns, Australia. Transfusion 49: 14821487.[Crossref] [Google Scholar]
  42. Shang CS, Fang CT, Liu CM, Wen TH, Tsai KH, King CC, , 2010. The role of imported cases and favorable meteorological conditions in the onset of dengue epidemics. PLoS Negl Trop Dis 4: e775.[Crossref] [Google Scholar]
  43. Kay BH, Ryan PA, Russell BM, Holt JS, Lyons SA, Foley PN, , 2000. The importance of subterranean mosquito habitat to arbovirus vector control strategies in north Queensland, Australia. J Med Entomol 37: 846853.[Crossref] [Google Scholar]
  44. Russell BM, McBride WJ, Mullner H, Kay BH, , 2001. Epidemiological significance of subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993. J Med Entomol 39: 143145.[Crossref] [Google Scholar]
  45. Timbal B, Fernandez E, Li Z, , 2009. Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24: 341358.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 12 Jul 2011
  • Accepted : 30 Sep 2012
  • Published online : 09 Jan 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error