1921
Volume 86, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The geographic pattern of human risk for infection with sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of host-seeking nymphs infected with , which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.11-0395
2012-02-01
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/14761645/86/2/320.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0395&mimeType=html&fmt=ahah

References

  1. Steere AC, Hardin JA, Malawista SE, 1977. Lyme arthritis: the enlarging clinical spectrum. Clin Res 25: 368A.
    [Google Scholar]
  2. Steere AC, 1989. Lyme disease. N Engl J Med 321 586596.
    [Google Scholar]
  3. Steere AC, Hardin JA, Malawista SE, 1977. Erythema chronicum migrans and Lyme arthritis: cryoimmunoglobulins and clinical activity of skin and joints. Science 196: 11211122.[Crossref]
    [Google Scholar]
  4. Bacon RM, Kugeler KJ, Mead PS, 2008. Surveillance for Lyme disease—United States, 1992–2006. MMWR Surveill Summ 57: 19.
    [Google Scholar]
  5. Shadick NA, Phillips CB, Logigian EL, Steere AC, Kaplan RF, Berardi VP, Duray PH, Larson MG, Wright EA, Ginsburg KS, Katz JN, Liang MH, 1994. The long-term clinical outcomes of Lyme disease. A population-based retrospective cohort study. Ann Intern Med 121: 560567.[Crossref]
    [Google Scholar]
  6. Nadelman RB, Arlin Z, Wormser GP, 1991. Life-threatening complications of empiric ceftriaxone therapy for seronegative Lyme disease. South Med J 84: 12631264.[Crossref]
    [Google Scholar]
  7. Holzbauer SM, Kemperman MM, Lynfield R, 2010. Death due to community-associated Clostridium difficile in a woman receiving prolonged antibiotic therapy for suspected Lyme disease. Clin Infect Dis 51: 369370.[Crossref]
    [Google Scholar]
  8. Aguero-Rosenfeld ME, Wang GQ, Schwartz I, Wormser GP, 2005. Diagnosis of Lyme borreliosis. Clin Microbiol Rev 18: 484501.[Crossref]
    [Google Scholar]
  9. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strie F, Stanek G, Bockenstedt L, Fish D, Dumler JS, Nadelman RB, 2006. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis 43: 10891134.[Crossref]
    [Google Scholar]
  10. Center for Disease Control and Prevention, 2010. Reported cases of Lyme disease–United States, 2009. Available at: http://www.cdc.gov/ncidod/dvbid/lyme/ld_incidence.htm. Accessed October 21, 2010.
    [Google Scholar]
  11. Mather TN, Nicholson MC, Donnelly EF, Matyas BT, 1996. Entomologic index for human risk of Lyme disease. Am J Epidemiol 144: 10661069.[Crossref]
    [Google Scholar]
  12. Reisen WK, 2010. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55: 461483.[Crossref]
    [Google Scholar]
  13. Falco RC, McKenna DF, Daniels TJ, Nadelman RB, Nowakowski J, Fish D, Wormser GP, 1999. Temporal relation between Ixodes scapularis abundance and risk for Lyme disease associated with erythema migrans. Am J Epidemiol 149: 771776.[Crossref]
    [Google Scholar]
  14. Diuk-Wasser M, Vourc'h G, Cislo P, Gatewood Hoen A, Melton F, Hamer S, Rowland M, Hickling GS, Tsao JI, Barbour AG, Kitron U, Piesman J, Fish D, 2010. Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Glob Ecol Biogeogr 19: 504514.
    [Google Scholar]
  15. Dennis DT, Nekomoto TS, Victor JC, Paul WS, Piesman J, 1998. Reported distribution of Ixodes scapularis and in Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol 35: 629638.[Crossref]
    [Google Scholar]
  16. Falco RC, Fish D, 1992. A comparison of methods for sampling the deer tick, Ixodes dammini, in a Lyme disease-endemic area. Exp Appl Acarol 14: 165173.[Crossref]
    [Google Scholar]
  17. Fish D, 1993. Population ecology of Ixodes dammini . HS Ginsberg, ed. Ecology and Environmental Management of Lyme Disease. New Brunswick, NJ: Rutgers University Press, 2542.
    [Google Scholar]
  18. Tsao JI, Wootton JT, Bunikis J, Luna MG, Fish D, Barbour AG, 2004. An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. P Natl Acad Sci USA 101: 1815918164.[Crossref]
    [Google Scholar]
  19. Allan BF, Keesing F, Ostfeld RS, 2003. Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17: 267272.[Crossref]
    [Google Scholar]
  20. Brownstein JS, Skelly DK, Holford TR, Fish D, 2005. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146: 469475.[Crossref]
    [Google Scholar]
  21. Homer C, Huang CQ, Yang LM, Wylie B, Coan M, 2004. Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sensing 70: 829840.[Crossref]
    [Google Scholar]
  22. Agarwal DK, Gelfand AE, Citron-Pousty S, 2002. Zero-inflated models with application to spatial count data. Environ Ecol Stat 9: 341355.[Crossref]
    [Google Scholar]
  23. Spielman A, Wilson ML, Levine JF, Piesman J, 1985. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu Rev Entomol 30: 439460.[Crossref]
    [Google Scholar]
  24. Pinger RR, Timmons L, Karris K, 1996. Spread of Ixodes scapularis (Acari: Ixodidae) in Indiana: collections of adults in 1991–1994 and description of a Borrelia burgdorferi-infected population. J Med Entomol 33: 852855.[Crossref]
    [Google Scholar]
  25. Barbour AG, Fish D, 1993. The biological and social phenomenon of Lyme disease. Science 260: 16101616.[Crossref]
    [Google Scholar]
  26. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davis R, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R, 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609628.[Crossref]
    [Google Scholar]
  27. Goddard J, Piesman J, 2006. New records of immature Ixodes scapularis from Mississippi. J Vector Ecol 31: 421422.[Crossref]
    [Google Scholar]
  28. Cilek JE, Olson MA, 2000. Seasonal distribution and abundance of ticks (Acari: Ixodidae) in northwestern Florida. J Med Entomol 37: 439444.[Crossref]
    [Google Scholar]
  29. Falco RC, Fish D, 1988. A survey of tick bites acquired in a Lyme disease-endemic area in southern New York State. Ann N Y Acad Sci 539: 456457.[Crossref]
    [Google Scholar]
  30. Rand PW, Lacombe EH, Dearborn R, Cahill B, Elias S, Lubelczyk CB, Beckett GA, Smith RP Jr, 2007. Passive surveillance in Maine, an area emergent for tick-borne diseases. J Med Entomol 44: 11181129.[Crossref]
    [Google Scholar]
  31. Pinger RR, Holycross J, Ryder J, Mummert M, 1991. Collections of adult Ixodes dammini in Indiana, 1987–1990, and the isolation of Borrelia burgdorferi . J Med Entomol 28: 745749.[Crossref]
    [Google Scholar]
  32. White DJ, Chang HG, Benach JL, Bosler EM, Meldrum SC, Means RG, Debbie JG, Birkhead GS, Morse DL, 1991. The geographic spread and temporal increase of the Lyme disease epidemic. JAMA 266: 12301236.[Crossref]
    [Google Scholar]
  33. Hamer SA, Tsao JI, Walker ED, Hickling GJ, 2010. Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth 7: 4763.[Crossref]
    [Google Scholar]
  34. Madhav NK, Brownstein JS, Tsao JI, Fish D, 2004. A dispersal model for the range expansion of blacklegged tick (Acari: Ixodidae). J Med Entomol 41: 842852.[Crossref]
    [Google Scholar]
  35. Lord RD, Lord VR, Humphreys JG, Mclean RG, 1994. Distribution of Borrelia burgdorferi in host mice in Pennsylvania. J Clin Microbiol 32: 25012504.
    [Google Scholar]
  36. Courtney JW, Dryden RL, Wyleto P, Schneider BS, Massung RF, 2003. Characterization of Anaplasma phagocytophila and Borrelia burgdorferi genotypes in Ixodes scapularis ticks from Pennsylvania. Ann N Y Acad Sci 990: 131133.[Crossref]
    [Google Scholar]
  37. Spielman A, Levine JF, Wilson ML, 1984. Vectorial capacity of North American Ixodes ticks. Yale J Biol Med 57: 507513.
    [Google Scholar]
  38. Jouda F, Perret JL, Gern L, 2004. Ixodes ricinus density and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J Med Entomol 41: 162169.[Crossref]
    [Google Scholar]
  39. Cadenas FM, Rais O, Jouda F, Douet V, Humair PF, Moret J, Gern L, 2007. Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a north- and south-facing altitudinal gradient on Chaumont Mountain, Switzerland. J Med Entomol 44: 683693.[Crossref]
    [Google Scholar]
  40. Estrada-Pena A, 2002. Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environ Health Perspect 110: 635640.[Crossref]
    [Google Scholar]
  41. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U, 2002. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 8: 289297.[Crossref]
    [Google Scholar]
  42. Brownstein JS, Holford TR, Fish D, 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 11521157.[Crossref]
    [Google Scholar]
  43. Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O'Callaghan CJ, Waltmer-Toews D, Barker IK, 2004. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol 41: 622633.[Crossref]
    [Google Scholar]
  44. Vail SG, Smith G, 1998. Air temperature and relative humidity effects on behavioral activity of blacklegged tick (Acari: Ixodidae) nymphs in New Jersey. J Med Entomol 35: 10251028.[Crossref]
    [Google Scholar]
  45. Randolph SE, Storey K, 1999. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36: 741748.[Crossref]
    [Google Scholar]
  46. Perret JL, Guigoz E, Rais O, Gern L, 2000. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res 86 554557.[Crossref]
    [Google Scholar]
  47. Schulze TL, Jordan RA, 2003. Meteorologically mediated diurnal questing of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J Med Entomol 40: 395402.[Crossref]
    [Google Scholar]
  48. Scharlemann JP, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GR, Rogers DJ, 2008. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3: e1408.[Crossref]
    [Google Scholar]
  49. Randolph SE, 2000. Ticks and tick-borne disease systems in space and from space. Adv Parasitol 47: 217243.[Crossref]
    [Google Scholar]
  50. Rand PW, Holman MS, Lubelczyk C, Lacombe EH, DeGaetano AT, Smith RP, 2004. Thermal accumulation and the early development of Ixodes scapularis . J Vector Ecol 29: 164176.
    [Google Scholar]
  51. Lindsay LR, Barker IK, Surgeoner GA, Mcewen SA, Gillespie TJ, Robinson JT, 1995. Survival and development of Ixodes-Scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J Med Entomol 32: 143152.[Crossref]
    [Google Scholar]
  52. Yuval B, Spielman A, 1990. Duration and regulation of the developmental cycle of Ixodes-Dammini (Acari, Ixodidae). J Med Entomol 27: 196201.[Crossref]
    [Google Scholar]
  53. Killilea ME, Swei A, Lane RS, Briggs CJ, Ostfeld RS, 2008. Spatial dynamics of Lyme disease: a review. EcoHealth 5: 167195.[Crossref]
    [Google Scholar]
  54. Dister SW, Fish D, Bros SM, Frank DH, Wood BL, 1997. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg 57: 687692.
    [Google Scholar]
  55. Frank DH, Fish D, Moy FH, 1998. Landscape features associated with Lyme disease risk in a suburban residential environment. Landscape Ecol 13: 2736.[Crossref]
    [Google Scholar]
  56. Centers for Disease Control and Prevention, 1999. Morbidity and Mortality Weekly Report. Available at: . Accessed May 1, 2005.
    [Google Scholar]
  57. Brownstein JS, Holford TR, Fish D, 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 11521157.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0395
Loading
/content/journals/10.4269/ajtmh.2012.11-0395
Loading

Data & Media loading...

Supplemental data

  • Received : 21 Jun 2011
  • Accepted : 09 Oct 2011
  • Published online : 01 Feb 2012
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error