Volume 86, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We analyzed the development of () in its natural sandfly vector . In addition, we compared sandfly infections initiated with axenic amastigotes or promastigotes. Our data showed no important difference between infection rates resulting from either type of infections. Furthermore, development of infection was equivalent in both cases. All promastigote forms were found inside the sandfly and, after blood digestion, most of the population consisted of procyclics and nectomonads. A low percentage of metacyclic forms was coincident with a high number of nectomonads during late stages of infection, but which form gives rise to metacyclic forms in is unknown. These results also show that the promastigote infection model, at least for this situation, is suitable for obtaining of infected sandflies because it is easier and less laborious.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2010. Control of the Leishmaniases. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, March 22–26, 2010. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf. Accessed March 16, 2011. [Google Scholar]
  2. Lutz A, Neiva A, , 1912. Contribuição para o conhecimento das espécies do gênero Phlebotomus no Brasil. Mem Inst Oswaldo Cruz 4: 8495.[Crossref] [Google Scholar]
  3. Michalsky EM, Rocha MF, Lima AC, França-Silva JC, Pires MQ, Oliveira FS, Pacheco RS, dos Santos SL, Barata RA, Romanha AJ, Fortes-Dias CL, Dias ES, , 2007. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia longipalpis phlebotominae sandflies. Vet Parasitol 147: 6776.[Crossref] [Google Scholar]
  4. Michalsky M, França-Silva JC, Barata RA, Lara-Silva FO, Loureiro AM, Fortes-Dias CL, Dias ES, , 2009. Phlebotominae distribution in Janaúba, an area transmission for visceral leishmaniasis in Brazil. Mem Inst Oswaldo Cruz 104: 5661.[Crossref] [Google Scholar]
  5. Cerbino Neto J, Werneck GL, Costa CH, , 2009. Factors associated to the incidence of urban visceral leishmaniasis: an ecologic study in Teresina, Brazil. Cad Saude Publica 25: 15431551.[Crossref] [Google Scholar]
  6. Borovsky D, Schlein Y, , 1987. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol 1: 235242.[Crossref] [Google Scholar]
  7. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL, , 1997. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sandfly midgut. Parasitol 115: 359369.[Crossref] [Google Scholar]
  8. Pimenta PF, Turco SJ, McConville M, Lawyer PG, Perkins PV, Sacks DL, , 1992. Stage-specific adhesion of Leishmania promastigotes to sandfly midgut. Science 256: 18121815.[Crossref] [Google Scholar]
  9. Kamhawi S, Ramalho-Ortigão M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barrillas-Mury C, Sacks DL, Valenzuela JG, , 2004. A role for insect galectins in parasite. Cell 119: 329341.[Crossref] [Google Scholar]
  10. Pimenta PF, Saraiva EM, Rowton E, Modi GG, Garraway LA, Beverley SM, Turco S, Sacks DL, , 1994. Evidence that the vectorial competence of phlebotomine sandflies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 91: 91559159.[Crossref] [Google Scholar]
  11. Sacks DL, Saraiva EM, Rowton E, Turco SJ, Pimenta PF, , 1994. The role of lipophosphoglycan of Leishmania in vector competence. Parasitol 108: 5562.[Crossref] [Google Scholar]
  12. Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ, , 1995. Stage-specific binding of Leishmania donovani to the sandfly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181: 685697.[Crossref] [Google Scholar]
  13. Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Berveley SM, , 2000. The role of phosphoglycans in Leishmania sandfly interations. Proc Natl Acad Sci USA 97: 406411.[Crossref] [Google Scholar]
  14. Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL, , 1996. Deficiency in β1,3-galactosyltranferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sandfly interaction. J Biol Chem 271: 2057320579.[Crossref] [Google Scholar]
  15. Kamhawi S, , 2000. The biological and immunomodulatory properties of sandfly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2: 17651773.[Crossref] [Google Scholar]
  16. Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ, , 2002. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sandfly Lutzomyia longipalpis . Mol Biochem Parasitol 121: 213224.[Crossref] [Google Scholar]
  17. Soares RP, Margonari C, Secundino NF, Macedo ME, Costa SM, Rangel EF, Pimenta PF, Turco SJ, , 2010. Differential midgut attachment of Leishmania (Viannia) braziliensis in the sandflies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia . J Biomed Biotechnol 2010: 439174.[Crossref] [Google Scholar]
  18. Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, Pimenta PF, Turco SJ, Soares RP, , 2011. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol 41: 333342.[Crossref] [Google Scholar]
  19. Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR, , 1990. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43: 3143. [Google Scholar]
  20. Sacks DL, , 1989. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69: 100103.[Crossref] [Google Scholar]
  21. Rogers ME, Chance ML, Bates PA, , 2002. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis . Parasitol 124: 498507.[Crossref] [Google Scholar]
  22. Sacks DL, Lawyer P, Kamhawi S, Myler P, Fasel N, , 2008. The biology of Leishmania-sandfly interactions. , eds. Leishmania: After the Genome. Norfolk, United Kingdom: Caister Academic Press, 205238. [Google Scholar]
  23. Lainson R, Shaw JJ, , 1988. Observations on the development of Leishmania (L.) chagasi Cunha and Chagas in the midgut of the sandfly vector Lutzomyia longipalpis (Lutz and Neiva). Ann Parasitol Hum Comp 63: 134145.[Crossref] [Google Scholar]
  24. Walters LL, Modi GB, Chaplin GL, Tesh RB, , 1989. Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 41: 259317. [Google Scholar]
  25. Nieves E, Pimenta PF, , 2000. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psycodidae). J Med Entomol 37: 134140.[Crossref] [Google Scholar]
  26. Nieves E, Pimenta PF, , 2002. Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psychodidae). Am J Trop Med Hyg 67: 640647. [Google Scholar]
  27. Miranda JC, Secundino NF, Nieves E, Souza AP, Bahia-Nascimento AC, Prates DB, Pimenta RN, Pinto LC, Barral A, Pimenta PF, , 2008. Studies of the influence of the presence of domestic animals on increasing the transmission probabilities of leishmaniasis. Ann Med Entomol 17: 915. [Google Scholar]
  28. Zilberstein D, Shapira M, , 1994. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48: 449470.[Crossref] [Google Scholar]
  29. Saar Y, Ransford A, Waldman E, Mazareb S, Amim-Spector S, Plumblee J, Turco S, Ziberstein D, , 1998. Characterization of developmentally-regulated activities in amastigote of Leishmania donovani . Mol Biochem Parasitol 95: 920.[Crossref] [Google Scholar]
  30. Debrabante A, Joshi MB, Pimenta PF, Dwyer DM, , 2004. Generation of Leishmania donovani amastigotes: their growth and biological characteristics. Int J Parasitol 34: 205217.[Crossref] [Google Scholar]
  31. Dias Costa J, Soares R, Finkelstein LC, Corte-Real S, Meirelles MN, Porozzi R, , 2009. Fast high yield of pure Leishmania (Leishmania) infantum axenic amastigotes and their infectivity to mouse macrophages. Parasitol Res 105: 227236.[Crossref] [Google Scholar]
  32. Tesh RB, Modi GB, , 1984. A simple method for experimental infection of phlebotomine sandflies with Leishmania . Am J Trop Med Hyg 33: 4146. [Google Scholar]
  33. Saraiva EM, Pimenta PF, Brodin TN, Rowton E, Modi GB, Sacks DL, , 1995. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major on Phelebotomus papatasi . Parasitol 111: 275287.[Crossref] [Google Scholar]
  34. Charest H, Matlashewski G, , 1994. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14 29752984.[Crossref] [Google Scholar]
  35. Pan AA, , 1984. Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Exp Parasitol 58: 7280.[Crossref] [Google Scholar]
  36. Bates PA, Robertson CD, Tetley L, Coombs GH, , 1992. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitol 105: 193202.[Crossref] [Google Scholar]
  37. Bates PA, , 1994. The development biology of Leishmania promatigotes. Exp Parasitol 79: 215218.[Crossref] [Google Scholar]
  38. Doyle PS, Engel JC, Pimenta PFP, Da Silva PP, Dweyer DM, , 1991. Leishmania donovani: long term culture of axenic amastigotes at 37°C. Exp Parasitol 73: 326334.[Crossref] [Google Scholar]
  39. Gupta N, Goyal N, Rastogi AK, , 2001. In vitro cultivation and characterization of axenic amastigote of Leishmania . Trends Parasitol 17: 150153.[Crossref] [Google Scholar]
  40. Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA, , 2006. Analysis of ESTs from Lutzomyia longipalpis sandflies and their contribution toward understanding the insect-parasite relationship. Genomics 88: 831840.[Crossref] [Google Scholar]
  41. Telleria EZ, Pitaluga AN, Ortigão-Farias JR, Araújo APO, Ramalho Ortigão JM, Traub-Cseko YM, , 2007. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis . Arch Insect Biochem Physiol 66: 5363.[Crossref] [Google Scholar]
  42. Pitaluga AN, Beteille V, Lobo AR, Ortigão-Farias JR, Davila AMR, Souza AA, Ramalho-Ortigão JM, Traub-Cseko YN, , 2009. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Mol Genet Genomics 282: 307317.[Crossref] [Google Scholar]
  43. Lehane MJ, , 1997. Peritrophic matrix structure and function. Annu Rev Entomol 42: 525550.[Crossref] [Google Scholar]
  44. Schlein Y, Jacobson RL, Schlomai J, , 1991. Chitinase secreted by Leishmania functions in the sandfly vector and implement parasite transmission by bite. Proc R Soc Lond 245: 121126.[Crossref] [Google Scholar]
  45. Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG, , 2005. Characterization of an activated chitinolytic system in the midgut of the sandfly vectors Lutzomyia longipalpis and Phlebotomus papatasi . Insect Mol Biol 14: 703712.[Crossref] [Google Scholar]
  46. Sacks DL, Perkins PV, , 1985. Development of infective stage Leishmania promastigotes within phebotomine sandflies. Am J Trop Med Hyg 34: 456459. [Google Scholar]
  47. Warburg A, Schlein Y, , 1986. The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major . Am J Trop Med Hyg 35: 926930. [Google Scholar]
  48. Elnaeim DA, Ward RD, Young PE, , 1994. Development of Leishmania chagasi (Kinetoplastida: Trypanosomatidae) in the second blood-meal of its vector Lutzomyia longipalpis (Diptera: Psychodidae). Parasitol Res 80: 414419.[Crossref] [Google Scholar]
  49. Gossage SM, Rogers ME, Bates PA, , 2003. Two separate growth phases during the development of Leishmania in sandflies: implications for understanding the life cycle. Int J Parasitol 33: 10271034.[Crossref] [Google Scholar]
  50. Bauzer LG, Souza NA, Maingon RD, Peixoto AA, , 2007. Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. Mem Inst Oswaldo Cruz 102: 112.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 19 Jun 2011
  • Accepted : 26 Dec 2011
  • Published online : 01 Apr 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error